# Canagliflozin Advisory Committee Meeting

Endocrinologic and Metabolic Drugs Advisory Committee January 10, 2013



### Introduction

Jacqueline Coelln-Hough, R.Ph. Janssen Research & Development, LLC

# Canagliflozin Drug Class and Indication

#### New Class

- Sodium glucose co-transporter 2 (SGLT2) inhibitor
- Insulin independent mechanism

#### Proposed Indication

 an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus

#### Proposed dose and administration

- 100 or 300 mg tablet once daily
  - With specific recommendations for patients who should start with 100 mg

## Canagliflozin Clinical Development Program

- Largest T2DM program submitted to Health Authorities to date
  - 10,301 subjects enrolled in Phase 3
- Long duration of treatment
  - > 2800 subjects treated with canagliflozin ≥ 18 months
     (as of 01 July 2012 )
- Studies at each step of the treatment paradigm
- Significant experience in vulnerable populations (> 50 % Phase 3)
  - Long standing diabetes: mean 10.6 years
  - Age
    - ≥ 65 years: >3000 subjects
    - ≥ 75 years: >500 subjects
  - Renal impairment: > 1000 subjects
  - CV disease: >4000 subjects

### Canagliflozin

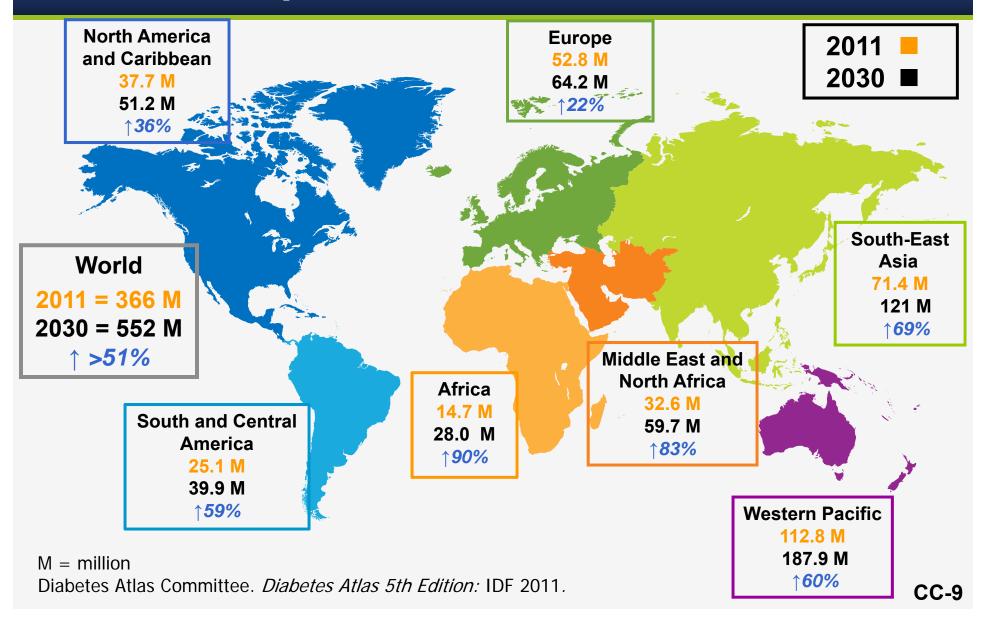
The totality of the data supports that canagliflozin:

- Provides substantial glucose control with the added benefits of weight loss and BP reduction
- Has a safety profile that is characterized across the full continuum of patients with T2DM
- Has adverse drug reactions that can be managed
- Both the 100 and 300 mg doses provide a valuable additional treatment option to address the unmet medical need

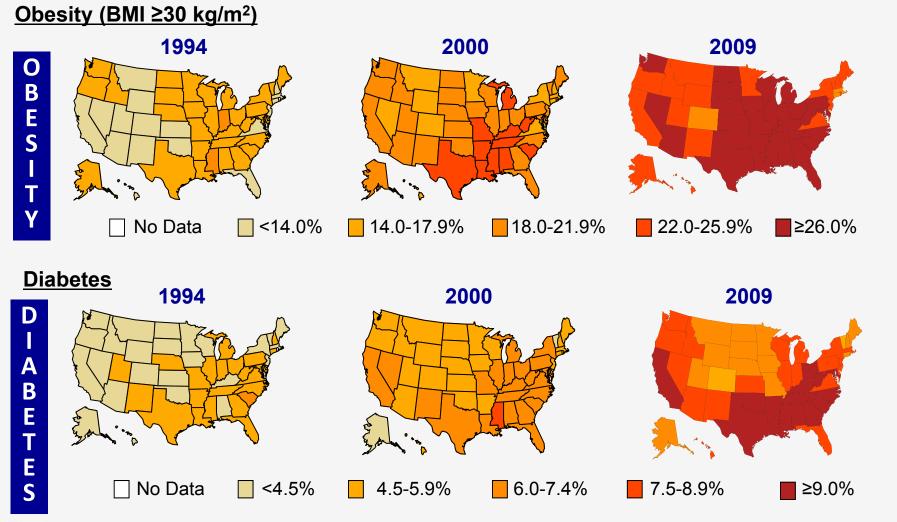
## **Sponsor Presentation Agenda**

| Introduction                                             | Jacqueline Coelln-Hough, RPh Janssen Research & Development, LLC Senior Director, Global Regulatory Affairs                            |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Medical Landscape & Unmet Need                           | Edward Horton, MD Senior Investigator, Joslin Diabetes Center, Boston Professor of Medicine, Harvard Medical School Past-President ADA |  |
| Mechanism of Action, Phase 3 Program Overview & Efficacy | Gary Meininger, MD  Janssen Research & Development, LLC  Franchise Medical Leader                                                      |  |
| Safety & Tolerability                                    | Peter Stein, MD  Janssen Research & Development, LLC  Head of Metabolism Development                                                   |  |
| Benefit-Risk Review                                      | John Gerich, MD Professor Emeritus, University of Rochester, New York                                                                  |  |

### **Consultants Available to the Committee**


| Participant           | Expertise and Affiliation                                                                                              |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------|--|
| George Bakris, MD     | Nephrology Professor of Medicine , University of Chicago                                                               |  |
| John Bilezikian, MD   | Metabolic Bone Disease Professor of Medicine & Pharmacology Columbia University College of Physicians and Surgeons     |  |
| Samuel Cohen, MD, PhD | Oncology Professor, Department of Pathology & Microbiology, University of Nebraska Medical Center                      |  |
| Greg Fulcher, MD      | Chairman of the Endpoint Adjudication Committee Clinical Professor of Medicine University of Sydney                    |  |
| Peter Kowey, MD       | Cardiovascular Professor of Medicine & Clinical Pharmacology, Thomas Jefferson University                              |  |
| David Matthews, MD    | Chairman of the CANVAS Steering Committee Professor of Diabetes Oxford Center for Diabetes, Endocrinology & Metabolism |  |
| Paul Watkins, MD      | <b>Hepatology</b> Professor of Medicine, University of North Carolina Health Care System                               |  |

## **Medical Landscape**


### **Edward Horton, MD**

Joslin Diabetes Center, Harvard Medical School, Boston

# Global Projections for the Diabetes Epidemic: 2011–2030



# Increased Obesity has Led to Increased Type 2 Diabetes





CDC's Division of Diabetes Translation. National Diabetes Surveillance System available at http://www.cdc.gov/diabetes/statistics

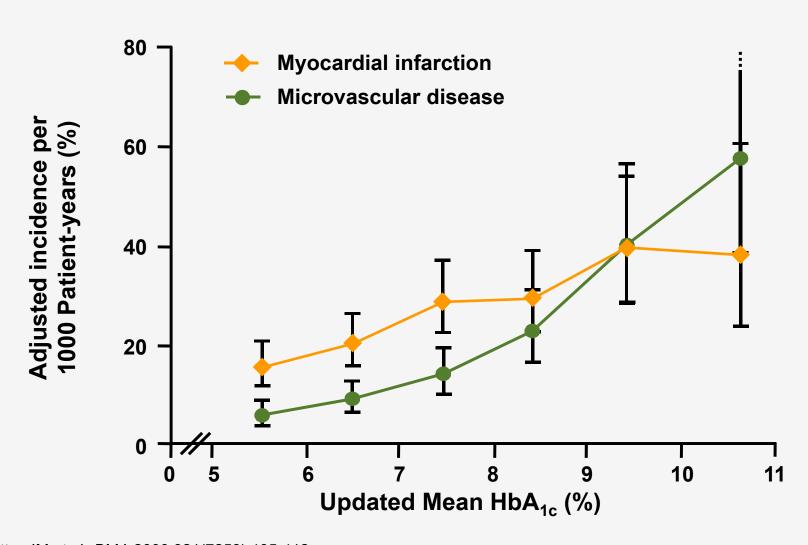


### The Dual Epidemic: Obesity and Diabetes

- 65% of adult Americans are overweight (BMI >25) and 32% are obese (BMI >30)
- There are now an estimated 25.8 million people with DM in the USA (11.3% of adults) and 79 million with pre-diabetes (IFG/IGT)
- The lifetime risk of developing DM for people born in 2000 is 33% for men and 39% for women

#### **Economic Costs of Diabetes**

- Total direct and indirect costs of diabetes in the USA (2007): \$174 billion\*. Direct costs \$116 billion, indirect costs \$58 billion
- Diabetes is the leading cause of blindness in adults, the leading cause of kidney failure and of non-traumatic lower limb amputations.
- 60-70% of people with diabetes have mild to severe neuropathy
- The risk of heart disease and stroke is 2-4x greater in people with diabetes than without


# **Lowering HbA<sub>1c</sub> Reduces Complications** in Type 1 and Type 2 Diabetes

| HbA <sub>1c</sub>        | DCCT<br>9.1% → 7.3% | Kumamoto<br>9.4% → 7.1% | UKPDS<br>7.9% → 7.0% |
|--------------------------|---------------------|-------------------------|----------------------|
| Retinopathy              | ↓ 63%               | ↓ 69%                   | ↓ 17%–21%            |
| Nephropathy              | ↓ 54%               | ↓ 70%                   | <b>↓ 24%–33%</b>     |
| Neuropathy               | ↓ 60%               | Significantly improved  | _                    |
| Macrovascular<br>disease | <b>↓ 41%</b> *      |                         | ↓ 16%*               |

#### \*Not statistically significant

DCCT Research Group. *N Engl J Med.* 1993;329:977-986. Ohkubo Y, et al. *Diabetes Res Clin Pract.* 1995;28:103-117. UKPDS Group. *Lancet.* 1998;352:837-853.

# Glycemia in Relation to Microvascular Disease and Myocardial Infarction



### Glycemic Goals for Diabetes Management

NORMAL GOAL

#### AMERICAN DIABETES ASSOCIATION

HbA<sub>1c</sub> (%)

< 6

< 7\*

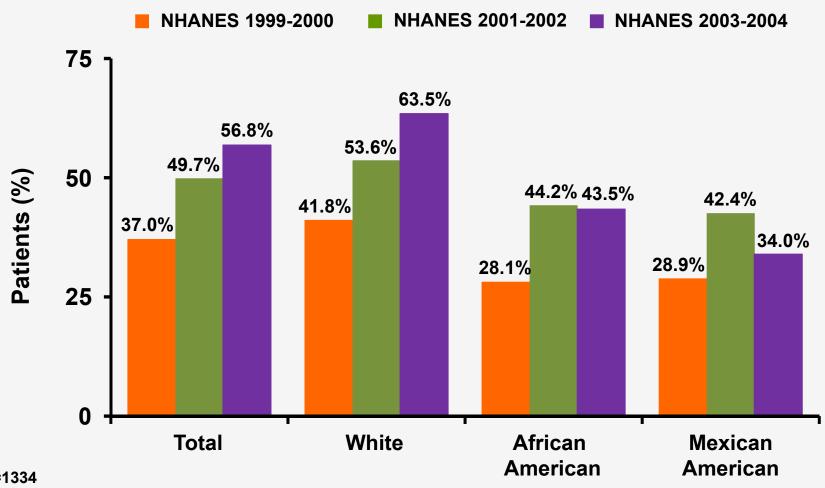
AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGY (AACE/ACE)

HbA<sub>1c</sub> (%)

< 6

 $\leq 6.5$ 

\*  $HbA_{1c}$  goal for individual patient is as close to normal (<6%) as possible without significant hypoglycemia

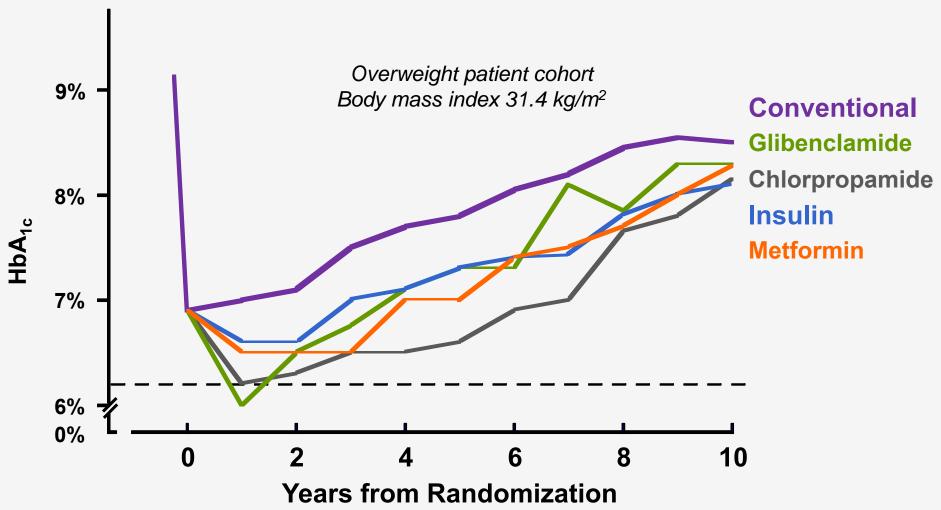

American Diabetes Association. Diabetes Care. 2007 Jan 1; 30(suppl\_1):S4-41.

American College of Endocrinology Consensus Conference on Guidelines for Glycemic Control. August 2001, Washington, DC.

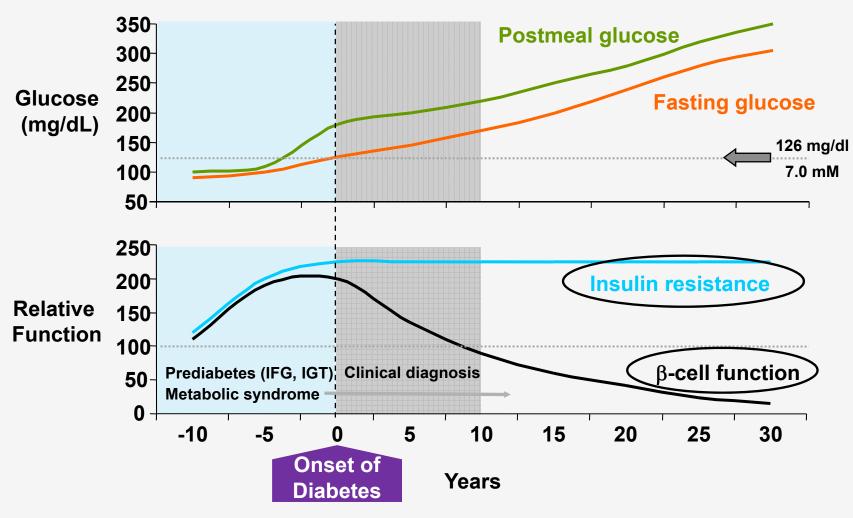
# The Need for Individualization of Treatment Approaches and Goals

- Intensive management with tight glycemic control – can have dramatic and long-term benefits
- However, late introduction of tight control in older patients with CVD (as in ACCORD), may have risks
- The key is <u>individualization</u> of therapy based upon age, life expectancy, presence of complications, co-morbidities (including CVD), other patient factors, risks/impact of hypoglycemia, all must be considered

# Glycemic Control Has Improved – But Many Patients Still Not at Goal HbA<sub>1c</sub> < 7%

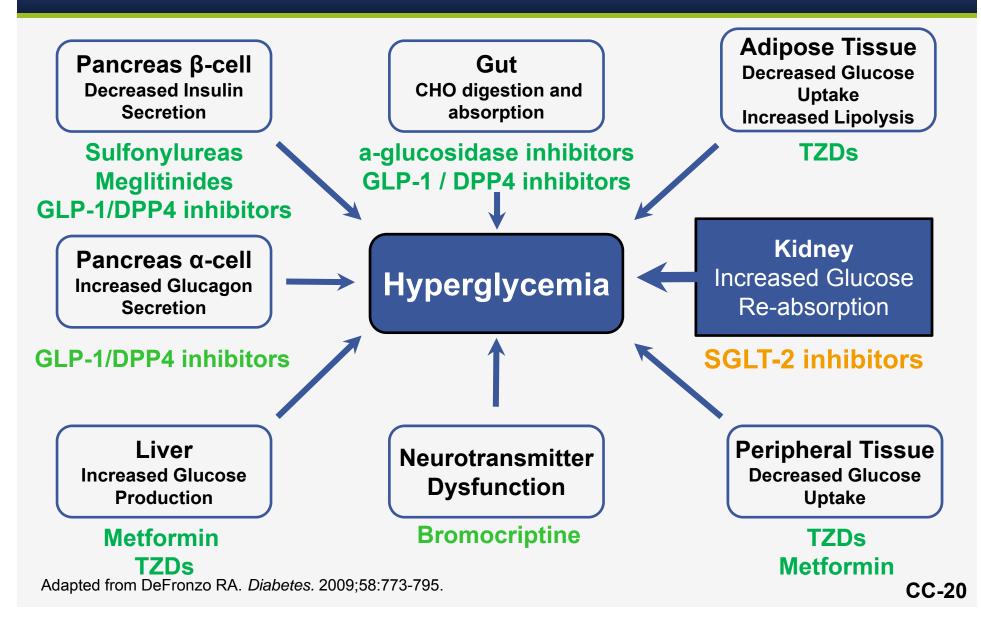



N=1334 NHANES=National Health and Nutrition Examination Survey


Data from Ford E, et al. Diabetes Care. 2008;31(1):102-104.

## UKPDS Head to Head Therapy Comparison: Progressive Deterioration with All Agents

Progressive HbA1c deterioration – due to progressive loss of insulin secretion




### **Natural History of Type 2 Diabetes**



Kendall DM, Bergenstal RM ©2003 International Diabetes Center, Minneapolis, MN. All rights reserved.

# Pathophysiology and Pharmacotherapy of Hyperglycemia in Type 2 Diabetes



# **Limitations of Current Treatments for Patients with T2DM**

- 5 classes of oral agents 2 classes of SQ agents are recommended by ADA/EASD
- Limitations of currently available classes
  - Limited efficacy or durability: sulphonylurea (SU) agents, DPP-4 inhibitors
  - Hypoglycemia: SU agents, insulin
  - Weight gain: SU agents, PPARγ agents, insulin
  - GI side effects: metformin, GLP-1 agonists
  - Fluid retention: SU agents, PPARγ agents, insulin

Conclusion: there is a need for new agents / new options

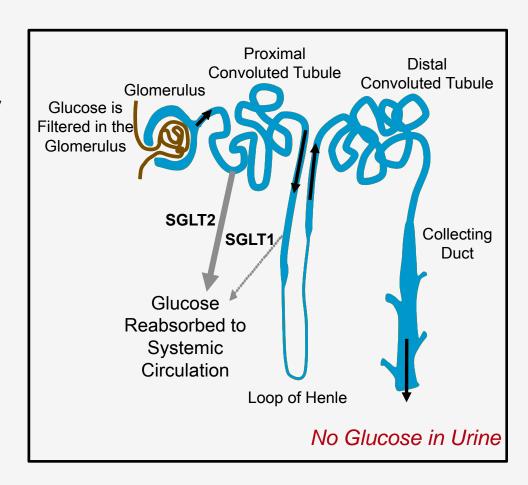
### **Imperative for New AHAs**

- Diabetes is a rapidly advancing epidemic
  - Failure to adequately control hyperglycemia can have devastating consequences on affected individuals and on society
- Currently available AHAs have limitations (wt gain, GI side effects, limited efficacy and/or long-term durability)
  - Many patients not achieving or maintaining HbA1c goal of < 7%</li>

### **Mechanism of Action**

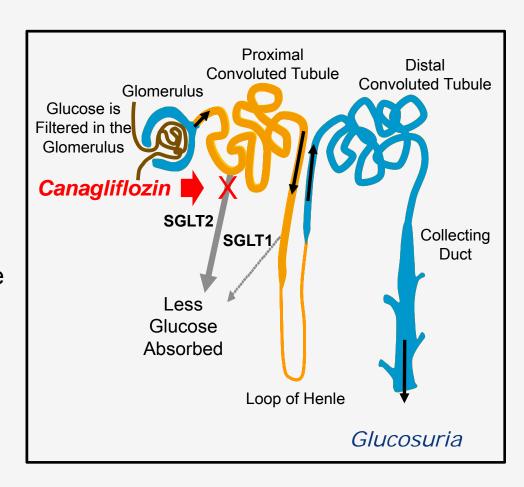
### **Gary Meininger, MD**

Franchise Medical Leader - Metabolism Janssen Research and Development

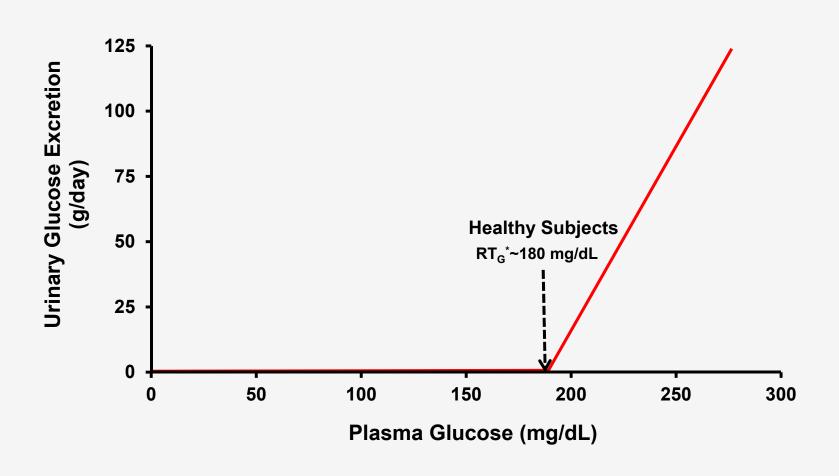

### Sodium-glucose Transporter-2 (SGLT2): Key Renal Transporter Reabsorbing Filtered Glucose Back into Systemic Circulation

#### SGLT2

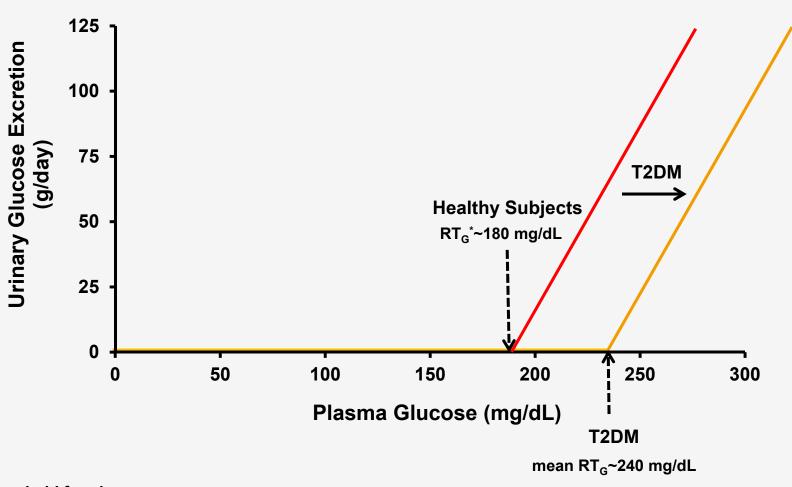
- Primarily expressed in kidney
- Responsible for majority of renal glucose reabsorption


#### SGLT1

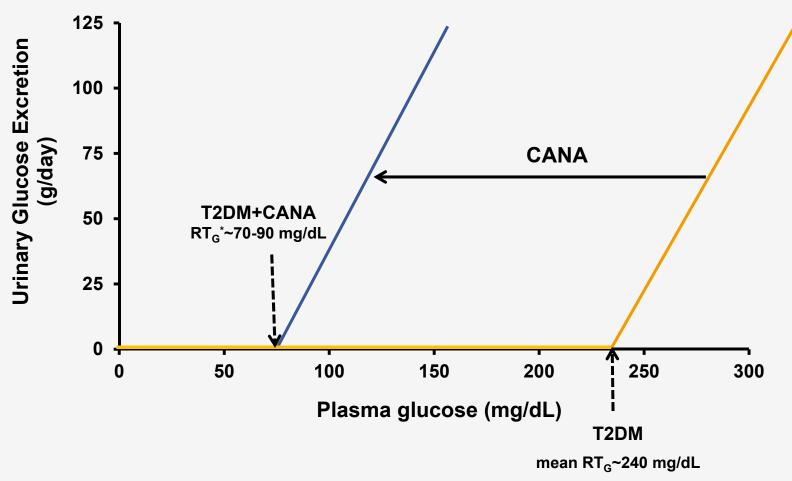
- Responsible for small portion of renal glucose reabsorption
- Prominent role in intestinal glucose absorption




## Canagliflozin: SGLT2 Inhibition Leads to Improved Glucose Control in T2DM


- CANA is potent, selective inhibitor of SGLT2
- UGE ~ 80-100 grams/day, thereby reducing plasma glucose
- Additional contributors to glucose control
  - Reduction in body weight due to 300-400 kcal/day loss to UGE
  - Improved beta-cell function
- Mechanism of action independent of insulin




## There is a Threshold Relationship Between Plasma Glucose and UGE

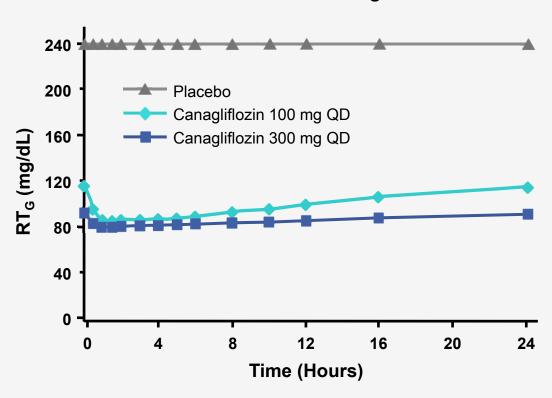


## Renal Glucose Reabsorption and RT<sub>G</sub> are Elevated in T2DM



### Canagliflozin Lowers RT<sub>G</sub>

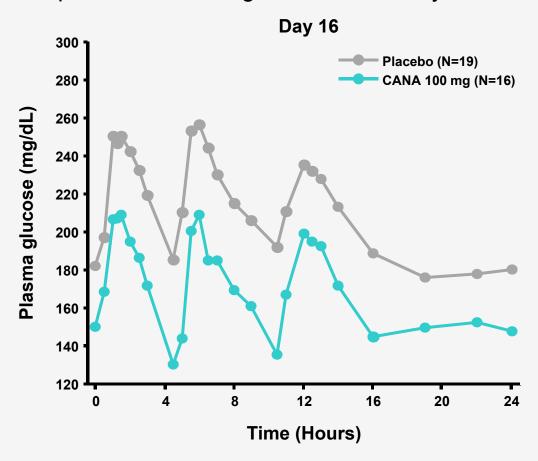



# Canagliflozin: Pharmacokinetics and Pharmacodynamics

#### **Pharmacokinetics**

- Half-life of 11-13 hrs supports once-daily dosing
- Balanced renal and biliary excretion
- Glucuronidation is major metabolic pathway
  - No active metabolites
- No clinically meaningful drug-drug interactions observed

#### **Pharmacodynamics**


24-Hour Profile for RT<sub>G</sub> in Subjects With T2DM Treated with Canagliflozin

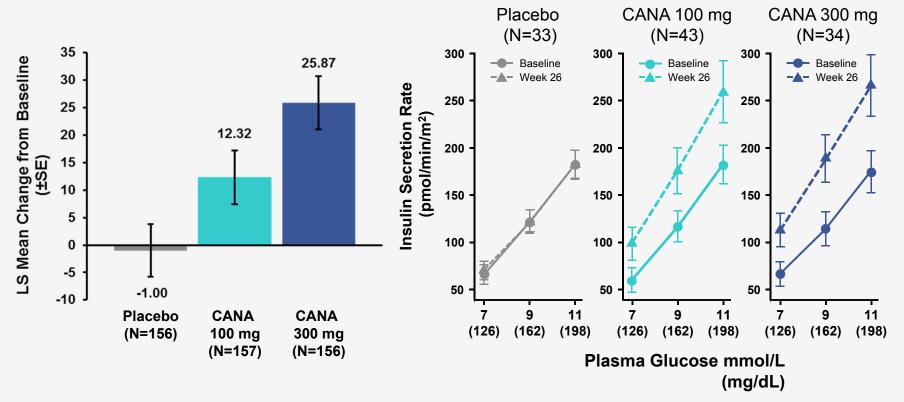


Profiles shown were obtained from PK/PD model developed using pooled Phase 1 dataset.(N=242)

## Canagliflozin Treatment Lowers Plasma Glucose Concentrations Throughout the Entire Day

Example: CANA 100 mg treatment in subjects with T2DM




Canagliflozin lowers fasting, postprandial, and 24-h mean plasma glucose

## Canagliflozin Treatment Improves Indices of Beta-cell Function

#### Data from DIA3002 (Week 26)

HOMA2-%B (Fasting-based index)

Insulin Secretion During FS-MMTT



- Similar results observed in all studies in subjects with T2DM where these indices have been assessed
- Effects believed to be secondary to improved glucose control rather than direct effects of SGLT inhibition

# Summary of Pharmacodynamic Effects of CANA 100 mg and 300 mg

| Effect                                                              | CANA 100 mg | CANA 300 mg |
|---------------------------------------------------------------------|-------------|-------------|
| Increased UGE                                                       | +           | ++          |
| Maximal RT <sub>G</sub> lowering during daytime                     | +           | +           |
| Maximal RT <sub>G</sub> lowering for full 24 h                      |             | +           |
| Reduced fasting and postprandial glucose                            | +           | ++          |
| Delayed intestinal glucose absorption (only after dosing with meal) |             | +           |
| Improved indices of beta-cell function                              | +           | ++          |

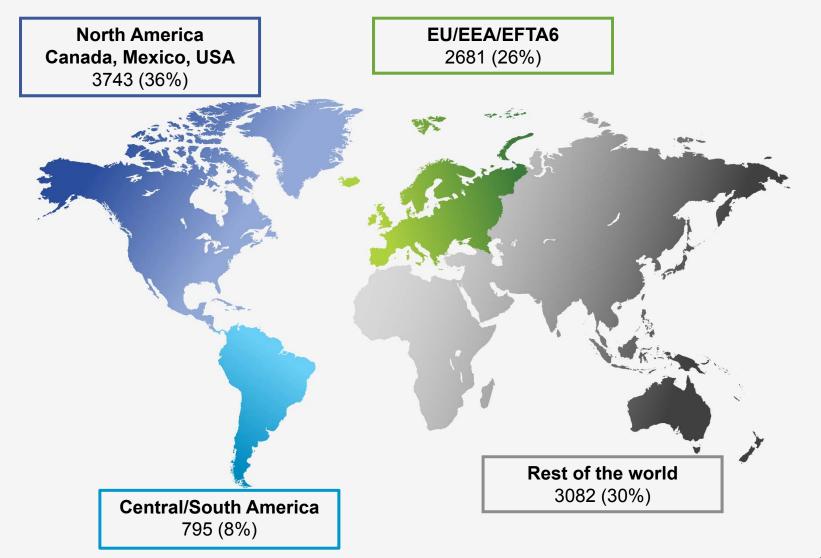
# Phase 3 Program Overview and Efficacy

### **Phase 3 Clinical Development Program:** 9 Studies Conducted

Insulin +/- oral(s) **Monotherapy Dual Combination Triple Combination** Monotherapy Combo with Combo with Combo with MET (DIA3005) **MET/PIO** INSULIN (DIA3006) (DIA3012) (Substudy DIA3008) 26 / 26 wks N=587 26 / 26 wks N=1284 18 wks N=1718 26 / 26 wks N=344 Combo with Combo with SU (Substudy DIA3008) **MET/SU (DIA3002)** 18 wks N=127 26 / 26 wks N=469 Combo with MET Combo with **Pbo-control** vs GLIM MET/SU vs SITA (DIA3009) (DIA3015) **Active-control** 52 / 52 wks N=1452 52 wks N=756 **Studies in Special T2DM Populations** 

Placebo-controlled studies / add-on to current diabetes treatment

**Older Subjects - Bone** Safety and Body Comp (DIA3010) 26 / 78 wks N=716


**Renal Impairment** (DIA3004)

26 / 26 wks N=272

**CV Safety Study** (DIA3008: CANVAS)

**Event-driven N=4330** 

### Distribution of Subjects Phase 3



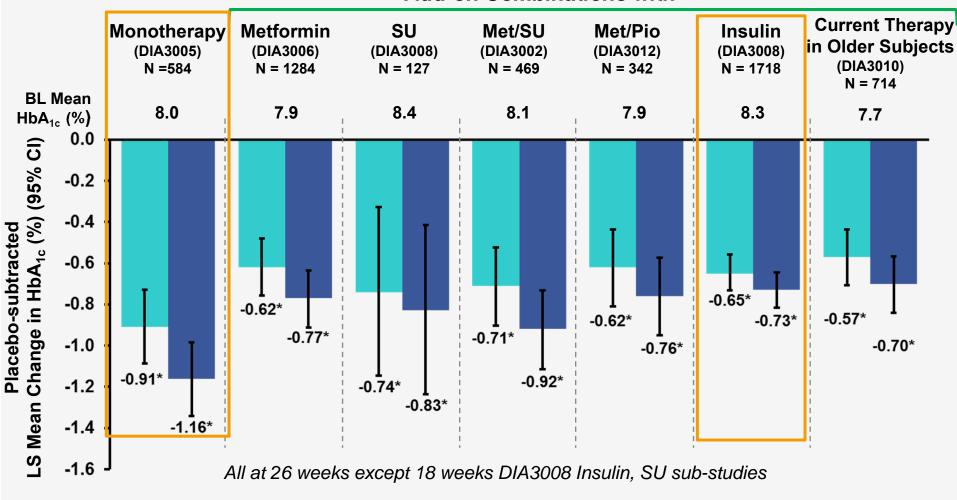
## Baseline Characteristics – Worldwide and US All Randomized Subjects from Phase 3 Studies

| Characteristic            | Worldwide<br>N=10301 | US<br>N=2634 |
|---------------------------|----------------------|--------------|
| Age, y                    |                      |              |
| Mean (SD)                 | 59.5 (9.46)          | 58.8 (9.86)  |
| Sex, n (%)                |                      |              |
| Male                      | 5965 (58)            | 1523 (58)    |
| Female                    | 4336 (42)            | 1111 (42)    |
| Race, n (%)               |                      |              |
| White                     | 7411 (72)            | 2158 (82)    |
| Black or African-American | 452 (4)              | 359 (14)     |
| Asian                     | 1643 (16)            | 50 (2)       |
| Other <sup>a</sup>        | 795 (8)              | 67 (3)       |
| Ethnicity, n (%)          |                      |              |
| Hispanic or Latino        | 1699 (16)            | 444 (17)     |
| Not Hispanic or Latino    | 8563 (83)            | 2177 (83)    |
| Not provided              | 39 (<1)              | 13 (<1)      |

<sup>&</sup>lt;sup>a</sup> Includes American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiple, and Other

### Overview of Efficacy

- Results from Placebo-controlled Studies
- Results from Active-controlled Studies
- Results in Subjects with Renal Impairment (Stage 3 CKD)
- HbA<sub>1c</sub> Subgroup Analyses


### Placebo-controlled Studies

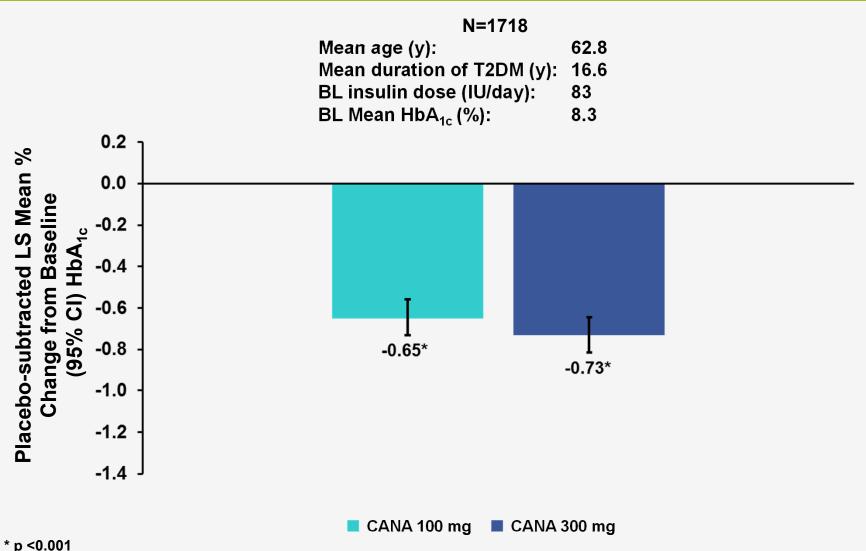
- HbA<sub>1c</sub>
- Body weight
- Systolic blood pressure

# HbA<sub>1c</sub> Change from Baseline Placebo-controlled Phase 3 Studies

#### **Add-on Combinations with**

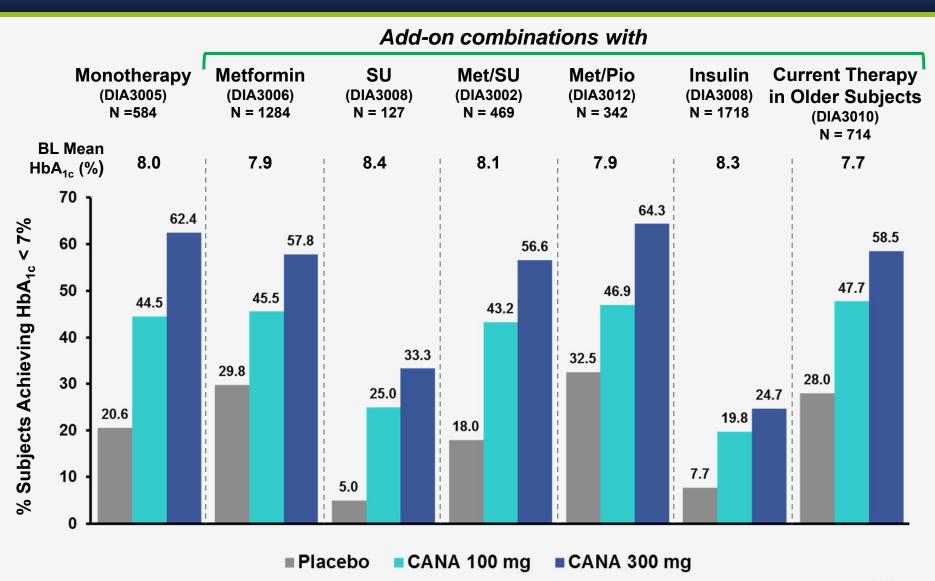
CANA 300 mg



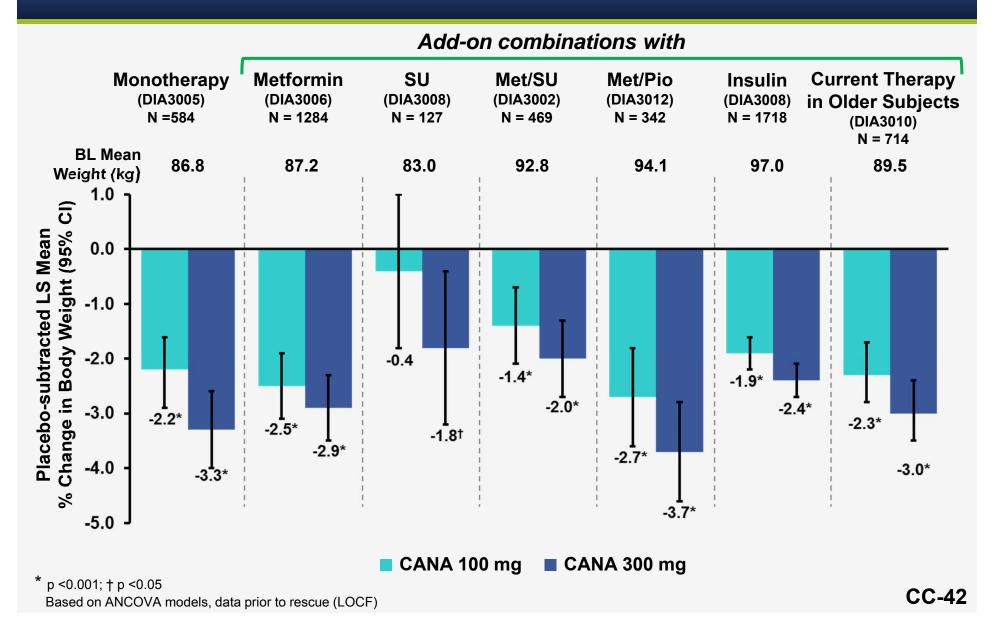

CANA 100 mg

\* p<0.001

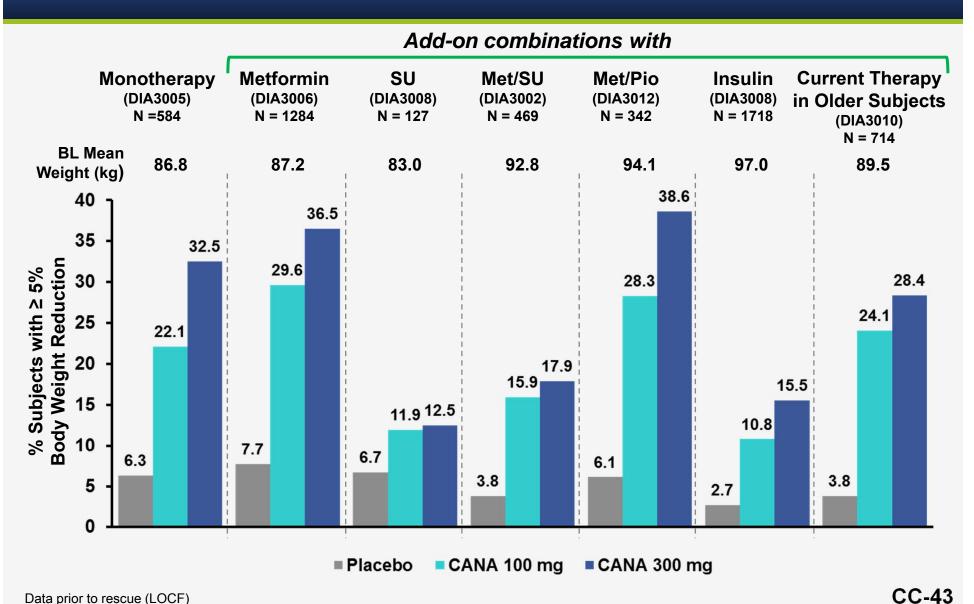
Based on ANCOVA models, data prior to rescue (LOCF)


**CC-39** 

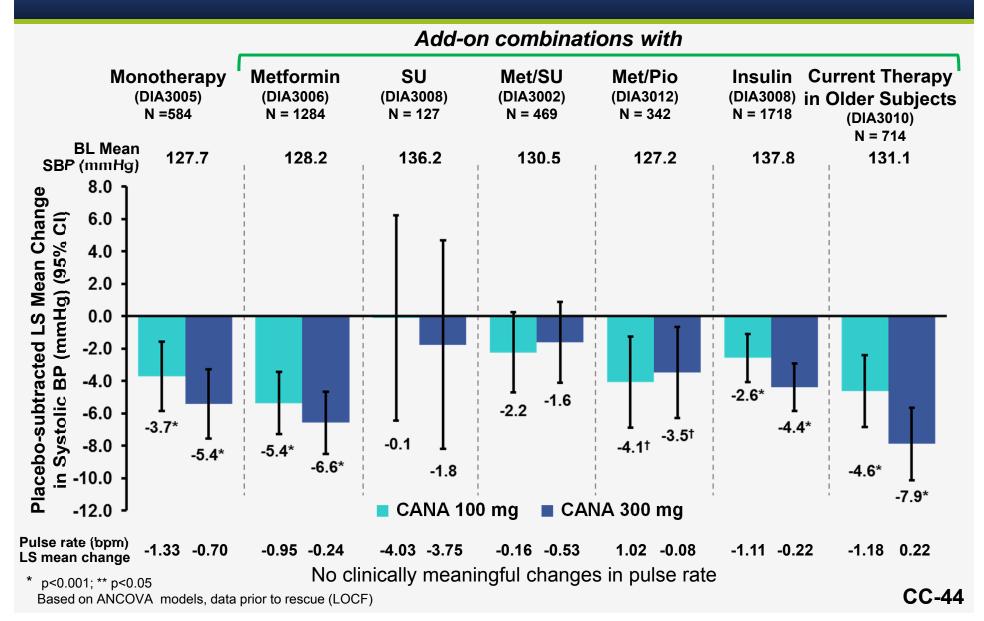
# HbA<sub>1c</sub> Change from Baseline at Week 18 Placebo-controlled Add-on to Insulin Substudy (DIA3008 Insulin)




Based on ANCOVA model, data prior to rescue (LOCF)


# **Subjects with HbA<sub>1c</sub> < 7% at Primary Endpoint Placebo-controlled Phase 3 Studies**



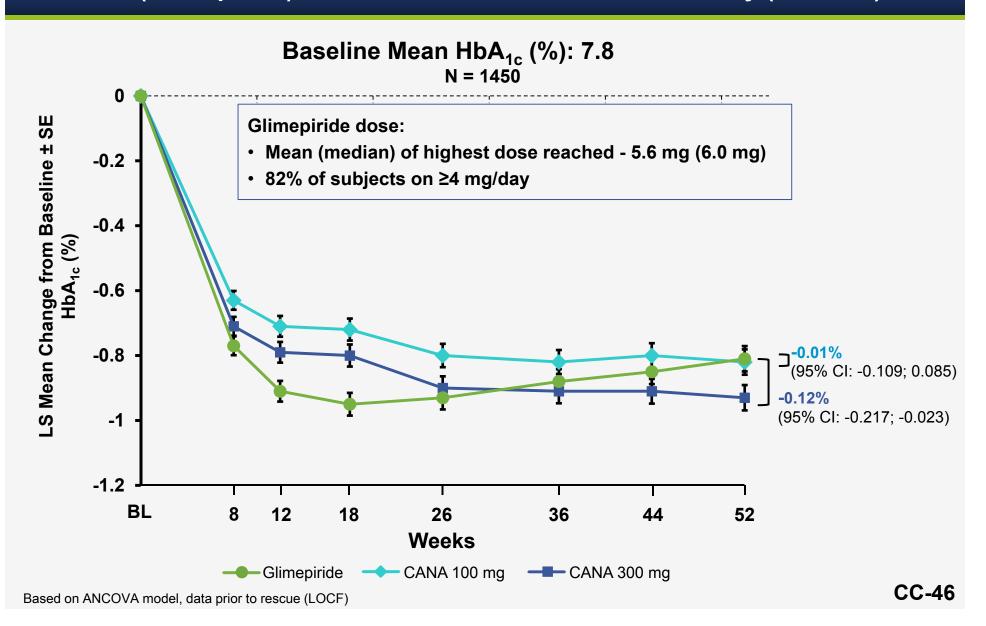

# **Body Weight Percent Change from Baseline Placebo-controlled Phase 3 Studies**



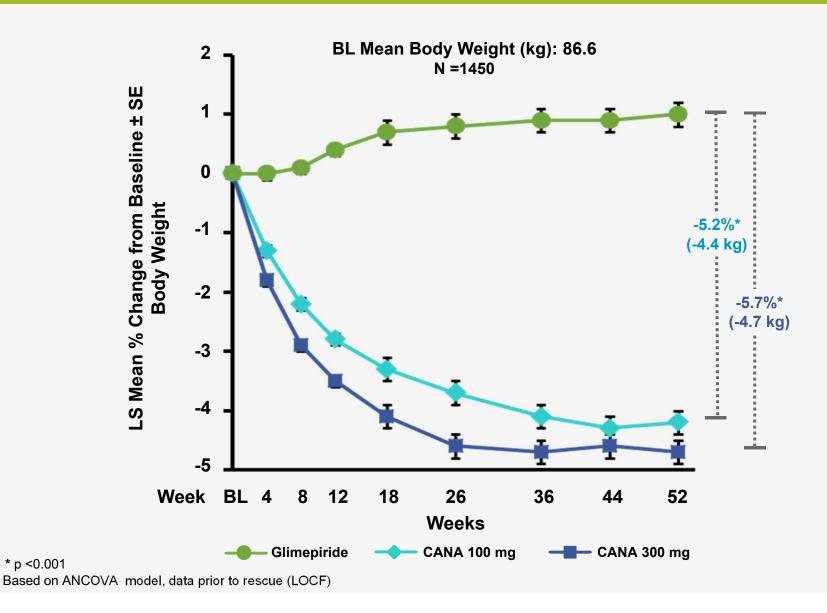
# Percent of Subjects with Weight Reduction ≥5% Placebo-controlled Phase 3 Studies



# Systolic Blood Pressure Change from Baseline Placebo-controlled Phase 3 Studies




### Results from Active-controlled Studies

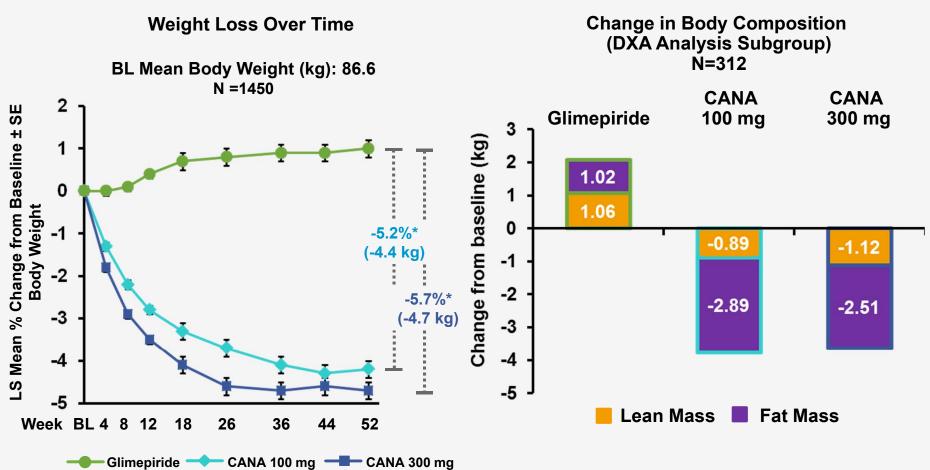

- HbA<sub>1c</sub>
- Body weight
- Systolic blood pressure

#### HbA1c Change from Baseline Over Time

Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009)



#### **Body Weight Percent Change from Baseline Over Time** Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009)

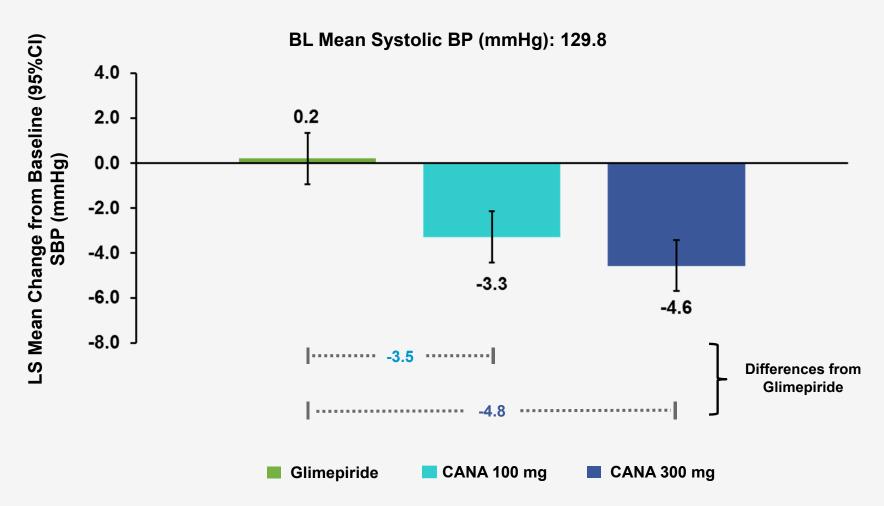



**CC-47** 

\* p < 0.001

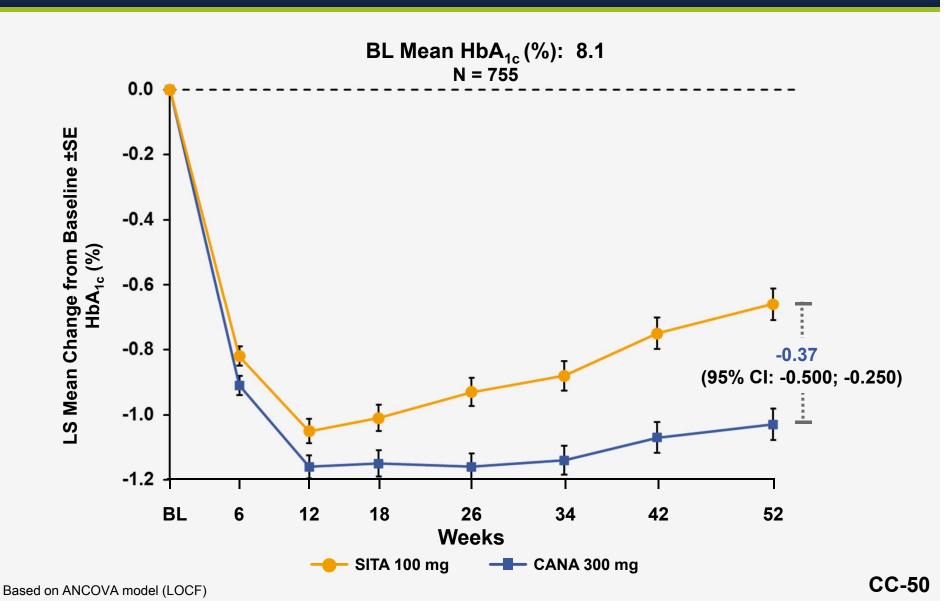
#### Changes in Body Composition and Weight

Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009)



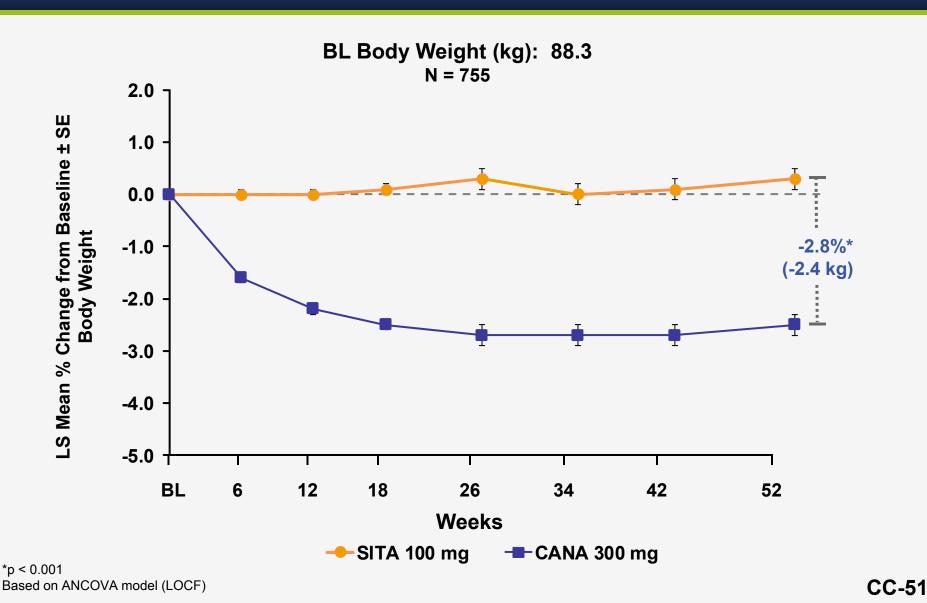

Weight changes relative to glimepiride in DXA analysis subgroup (-5.3 kg and -5.0 kg for CANA 100 mg and 300 mg, respectively) were similar to overall cohort.

<sup>\*</sup> p <0.001
Based on ANCOVA model, data prior to rescue (LOCF)

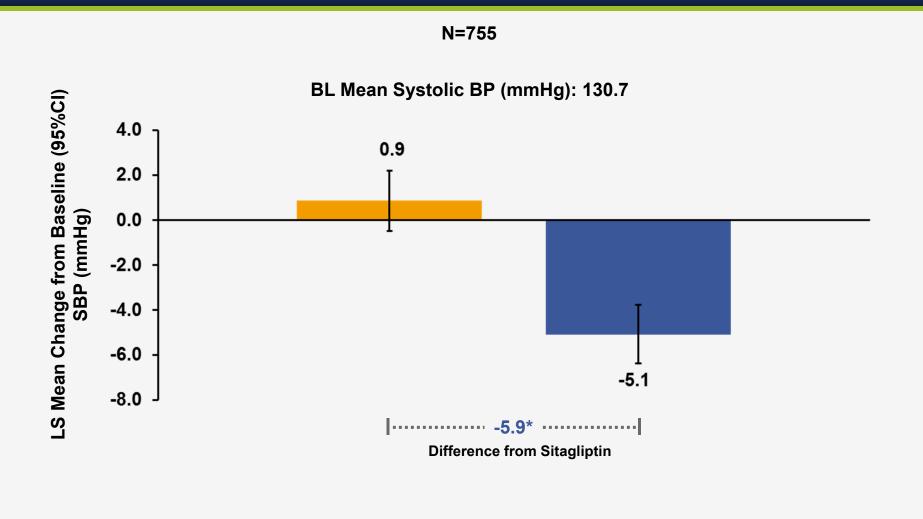

# Systolic Blood Pressure Change From Baseline at Week 52 Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009)






#### HbA<sub>1c</sub> Change from Baseline Over Time

Active (Sitagliptin)-controlled Add-on to Metformin + SU Study (DIA3015)




### Body Weight Percent Change from Baseline Over Time

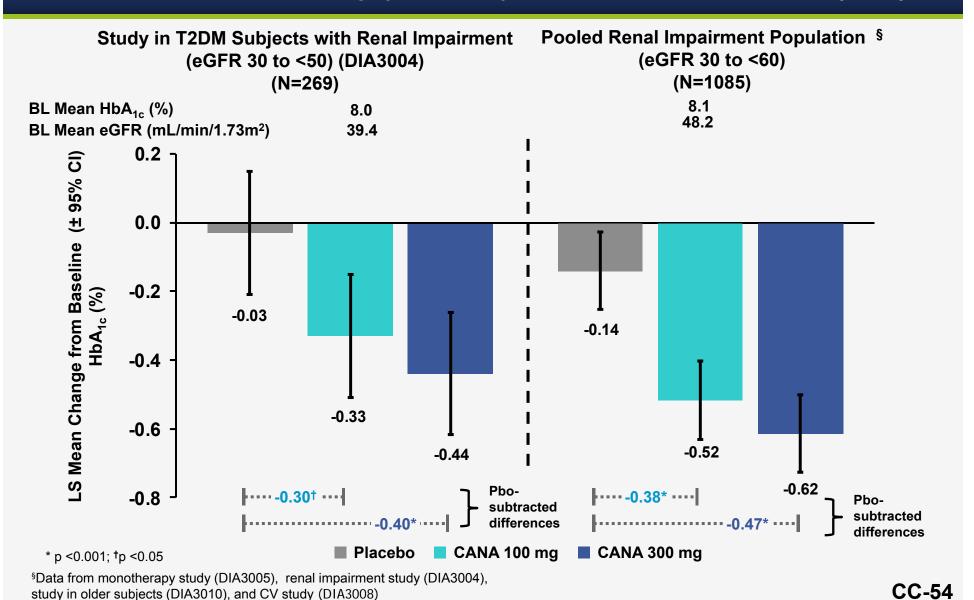
Active (Sitagliptin)-controlled Add-on to Metformin + SU Study (DIA3015)



## Systolic Blood Pressure Change From Baseline at Week 52 Active (Sitagliptin)-controlled Add-on to Metformin + SU Study (DIA3015)

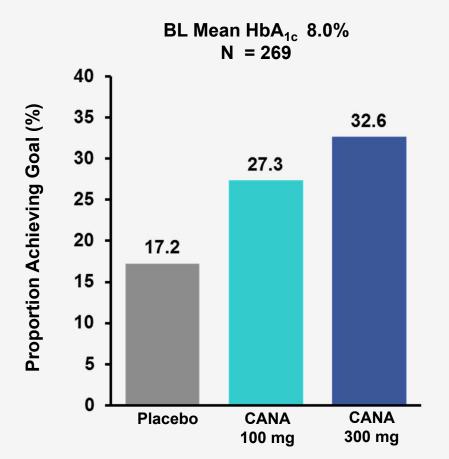


SITA 100 mg

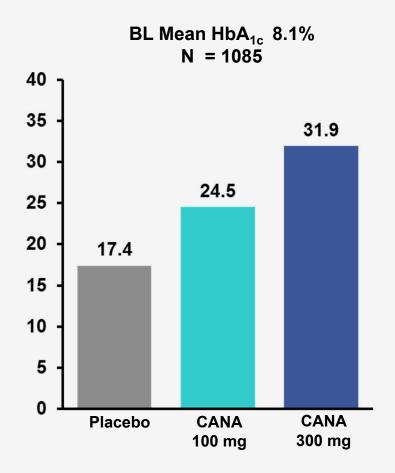

CANA 300 mg

\* p <0.001 Based on ANCOVA model (LOCF)

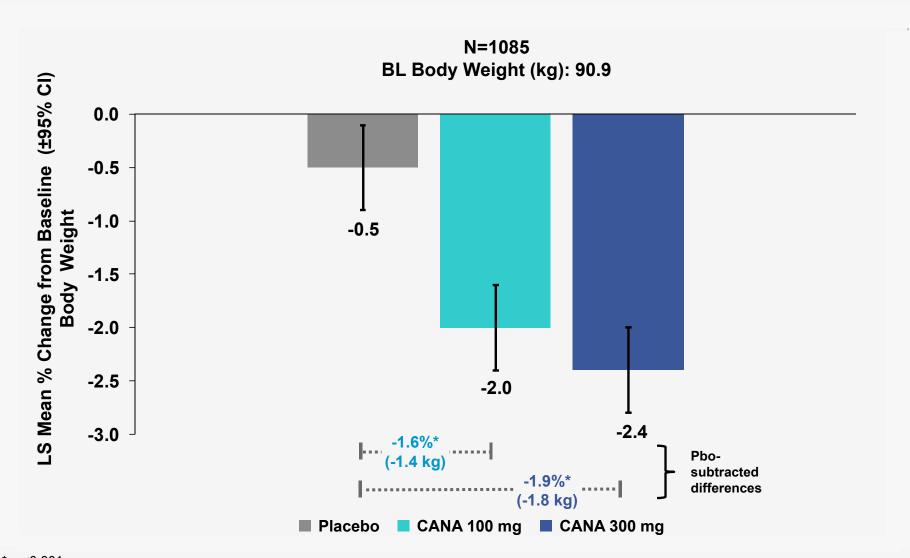
# Results in Subjects with Renal Impairment


- HbA1c
- Body weight
- Systolic blood pressure

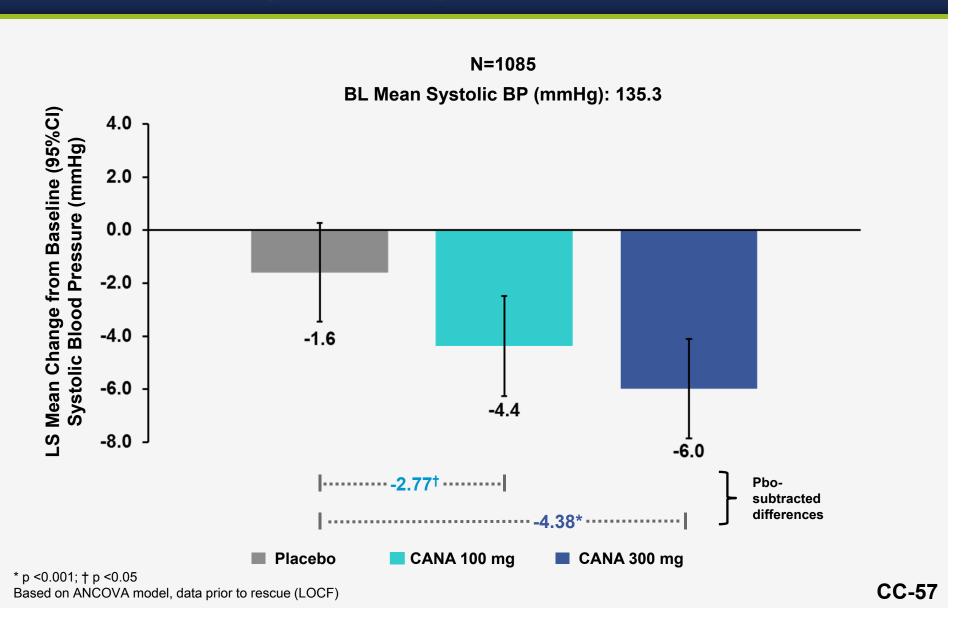
# HbA<sub>1c</sub> Change from Baseline Renal Impairment Study (DIA3004) and Pooled Population (DS2)




# Subjects Achieving HbA<sub>1c</sub> <7.0% Renal Impairment Study (DIA3004) and Pooled Population (DS2)

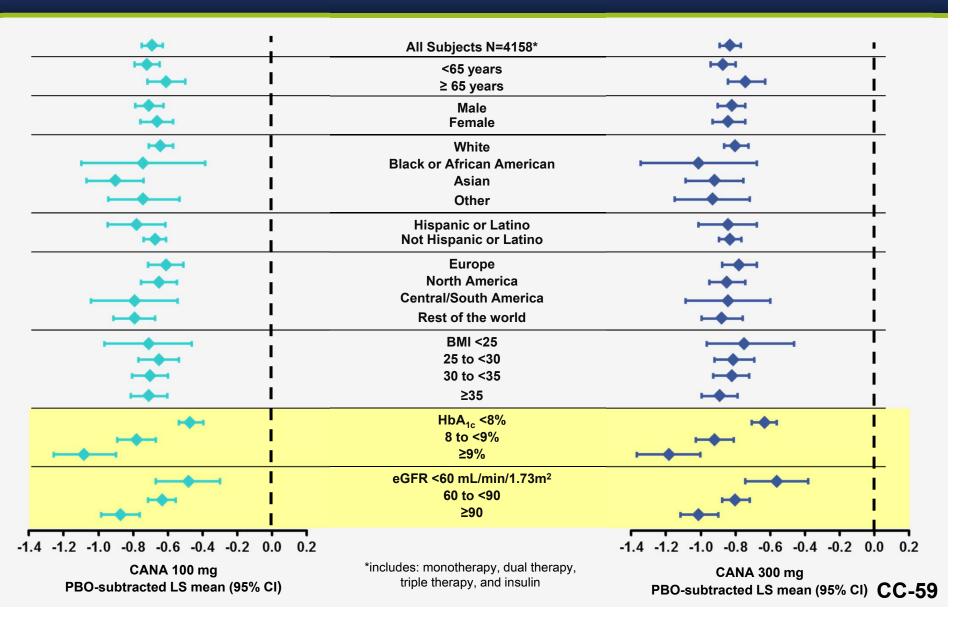

DIA3004 (eGFR\* 30 to <50)




### Pooled Renal Impairment Population (eGFR\* 30 to <60)



# Body Weight Percent Change from Baseline at Endpoint Pooled Renal Impairment Population (eGFR 30 to <60)




# Systolic BP Change from Baseline at Endpoint Pooled Renal Impairment Population (eGFR 30 to <60)



## HbA<sub>1c</sub> Subgroup Analyses

# HbA<sub>1c</sub> Change from Baseline by Subgroup Factors Pooled Placebo-controlled Studies for Efficacy



### **Summary of Canagliflozin Efficacy Data**

- HbA1c
  - Consistent improvement across Phase 3 studies, with more subjects achieving HbA1c goal
  - Sustained response over 52 weeks
  - Meaningful, albeit lesser, reductions in HbA1c in subjects with renal impairment
- Other efficacy parameters
  - Consistent reductions in body weight
  - Consistent reductions in systolic blood pressure
- Additional efficacy with 300 mg relative to 100 mg

# Overview of Safety and Tolerability

#### Peter Stein, MD

Head of Development, Metabolism

Janssen Research and Development, LLC

#### Agenda

- Pooled datasets for safety: definition, characteristics, exposure
  - Placebo-controlled 26 week studies dataset
  - "Broad Dataset"
- Review of adverse drug reactions (ADRs)
  - Overview of identified ADRs
  - Review of specific ADRs: UTIs, related to reduced intravascular volume
- Additional safety assessments
  - LDL-C changes and CV meta-analysis (including events in 1<sup>st</sup> 30 days in CANVAS)
  - Renal safety and safety in stage 3 CKD subjects
  - Bone

# Phase 3 Clinical Development Program: 9 Studies Conducted

Insulin +/- oral(s) **Monotherapy Dual Combination Triple Combination** Combo with Combo with **Monotherapy** Combo with MET (DIA3005) **MET/PIO** INSULIN (DIA3006) (DIA3012) (Substudy DIA3008) 26 / 26 wks N=587 26 / 26 wks N=1284 26 / 26 wks N=344 18 wks N=1784 Combo with Combo with SU (Substudy DIA3008) **MET/SU (DIA3002)** 18 wks N=127 26 / 26 wks N=469 Combo with MET Combo with **Pbo-control** vs GLIM MET/SU vs SITA (DIA3009) (DIA3015) **Active-control** 52 / 52 wks N=1452 52 wks N=756 **Studies in Special T2DM Populations** 

Studies in Special T2DM Populations
Placebo-controlled studies / add-on to current diabetes treatment

Older Subjects - Bone Safety and Body Comp (DIA3010) 26 / 78 wks N=716

Renal Impairment (DIA3004) 26 / 26 wks N=272 **CV Safety Study** (DIA3008: CANVAS)

**Event-driven N=4330** 

# Phase 3 Pooled Safety Populations: Placebo-controlled Studies Dataset (DS1)

**Monotherapy Dual Combination** Triple Combination Insulin +/- oral(s) Combo with **Monotherapy Combo with MET MET/PIO** (DIA3005) (DIA3006) (DIA3012) 26 / 26 wks N=1284 26 / 26 wks N=587 26 / 26 wks N=344 Combo with MET/SU (DIA3002) 26 / 26 wks N=469

4 Phase 3 studies / 2313 subjects 26 week double-blind duration

# Phase 3 Pooled Safety Populations: Broad Dataset (DS3)

Insulin +/- oral(s) **Monotherapy Dual Combination** Triple Combination Combo with Combo with **Combo with MET Monotherapy MET/PIO** INSULIN (DIA3005) (DIA3006) (Substudy DIA3008) (DIA3012) 26 / 26 wks N=587 26 / 26 wks N=1284 26 / 26 wks N=344 18 wks N=1784 Combo with SU Combo with (Substudy DIA3008) MET/SU (DIA3002) 18 wks N=127 26 / 26 wks N=469 8 Phase 3 Studies Combo with MET **Pbo-control** 9439 subjects vs GLIM •PBO/comparators pooled (DIA3009) **Active-control** (="Non-CANA" group) 52 / 52 wks N=1452

### Studies in Special T2DM Populations Placebo-controlled studies / add-on to current diabetes treatment

Older Subjects - Bone Safety and Body Comp (DIA3010) 26 / 78 wks N=716

Renal Impairment (DIA3004) 26 / 26 wks N=272 CV Safety Study (DIA3008: CANVAS)

**Event-driven N=4330** 

# **Baseline Characteristics Pooled Datasets**

|                                               | Placebo-controlled<br>Studies Dataset<br>N=2313 | Broad Dataset<br>N=9439 | CANVAS<br>N=4,327 |
|-----------------------------------------------|-------------------------------------------------|-------------------------|-------------------|
| Sex, n (%)                                    |                                                 |                         |                   |
| Male                                          | 49.5                                            | 58.2                    | 66.1              |
| Female                                        | 50.5                                            | 41.8                    | 33.9              |
| Age (y), Mean (SD)                            | 56.0 (9.81)                                     | 59.9 (9.35)             | 62.4 (8.02)       |
| Race, n (%)                                   |                                                 |                         |                   |
| White                                         | 72.2                                            | 72.6                    | 73.4              |
| Black or African-American                     | 5.1                                             | 3.8                     | 2.4               |
| Asian                                         | 12.3                                            | 15.8                    | 18.4              |
| Other                                         | 10.4                                            | 7.8                     | 5.8               |
| Body mass index, kg/m <sup>2</sup> ,Mean (SD) | 32.1 (6.42)                                     | 31.9 (6.06)             | 32.1 (6.24)       |
| HbA <sub>1c</sub> (%), Mean (SD)              | 8.0 (0.93)                                      | 8.0 (0.90)              | 8.2 (0.92)        |
| Duration of diabetes (y), Mean (SD)           | 7.3 (6.04)                                      | 10.6 (7.53)             | 13.4 (7.52)       |
| eGFR, Mean                                    | 88                                              | 81                      | 77                |
| ≥ 1 Microvascular<br>Complications (%)        | 18.9                                            | 33.1                    | 44.2              |

### Exposure

#### Placebo-controlled Studies Dataset and Broad Dataset through 01 Jul 2012

|                                      | Placebo-controlled Studies Dataset |                         |                         | Broad Dataset through 01 Jul 2012 |                          |                          |
|--------------------------------------|------------------------------------|-------------------------|-------------------------|-----------------------------------|--------------------------|--------------------------|
|                                      | Placebo<br>N=646                   | CANA<br>100 mg<br>N=833 | CANA<br>300 mg<br>N=834 | Non-CANA<br>N=3262                | CANA<br>100 mg<br>N=3092 | CANA<br>300 mg<br>N=3085 |
| Category, %                          |                                    |                         |                         |                                   |                          |                          |
| ≥ 50 weeks                           | 0                                  | 0                       | 0                       | 77.7                              | 83.5                     | 81.9                     |
| ≥ 76 weeks                           | 0                                  | 0                       | 0                       | 40.6                              | 46.4                     | 45.2                     |
| Mean (SD)                            | 23.8<br>(5.9)                      | 24.2<br>(5.7)           | 24.3<br>(5.5)           | 64.4<br>(30.2)                    | 68.8<br>(29.0)           | 67.4<br>(30.2)           |
| Median                               | 26.0                               | 26.1                    | 26.1                    | 65.9                              | 72.9                     | 72.4                     |
| Total<br>Exposure<br>(subject-years) | 294                                | 387                     | 388                     | 4024                              | 4075                     | 3987                     |

Note: Total duration = Treatment duration = last dose date - first dose date + 1 (in days).

Broad dataset does not include DIA3015

# Summary of Adverse Events Broad Dataset through 01 Jul 2012

|                                        | Non-CANA<br>N=3262<br>% | CANA 100 mg<br>N=3092<br>% | CANA 300 mg<br>N=3085<br>% |
|----------------------------------------|-------------------------|----------------------------|----------------------------|
| Any adverse events                     | 75.8                    | 76.6                       | 77.0                       |
| AEs leading to discontinuation         | 5.0                     | 5.6                        | 7.3                        |
| Serious AEs                            | 13.6                    | 13.5                       | 13.2                       |
| Serious AEs leading to discontinuation | 2.2                     | 2.0                        | 1.7                        |
| Deaths                                 | 1.1                     | 0.8                        | 0.8                        |

- Genital mycotic infections: male and female
- Osmotic diuresis-related (pollakiuria, thirst)
- Other: UTI, renal-related

### **Adverse Drug Reactions**

- Overview of ADRs
- Discussion of specific ADRs:
  - Urinary tract infections
  - Reduced intravascular volume-related AEs

# Summary of Adverse Drug Reactions ≥ 2% and > Placebo in the Placebo-controlled Studies Dataset

|                                          | Placebo<br>N=646<br>n (%) | CANA 100 mg<br>N=833<br>n (%) | CANA 300 mg<br>N=834<br>n (%) |
|------------------------------------------|---------------------------|-------------------------------|-------------------------------|
| Gastrointestinal Disorders               |                           |                               |                               |
| Constipation                             | 6 (0.9)                   | 15 (1.8)                      | 19 (2.3)                      |
| Thirst                                   | 1 (0.2)                   | 23 (2.8)                      | 19 (2.3)                      |
| Renal and Urinary Disorders              |                           |                               |                               |
| Polyuria or pollakiuria                  | 5 (0.8)                   | 44 (5.3)                      | 38 (4.6)                      |
| Urinary tract infection                  | 26 (4.0)                  | 49 (5.9)                      | 36 (4.3)                      |
| Reproductive System and Breast Disorders |                           |                               |                               |
| Balanitis or balanoposthitis             | 2 (0.6)                   | 17 (4.2)                      | 15 (3.7)                      |
| Vulvovaginal candidiasis                 | 10 (3.2)                  | 44 (10.4)                     | 49 (11.4)                     |

#### **Additional ADRs Identified**

#### In Broad Dataset

- Reduced intravascular volume-related AEs (eg, postural dizziness)
- Less common (< 2%): rash/urticaria</li>

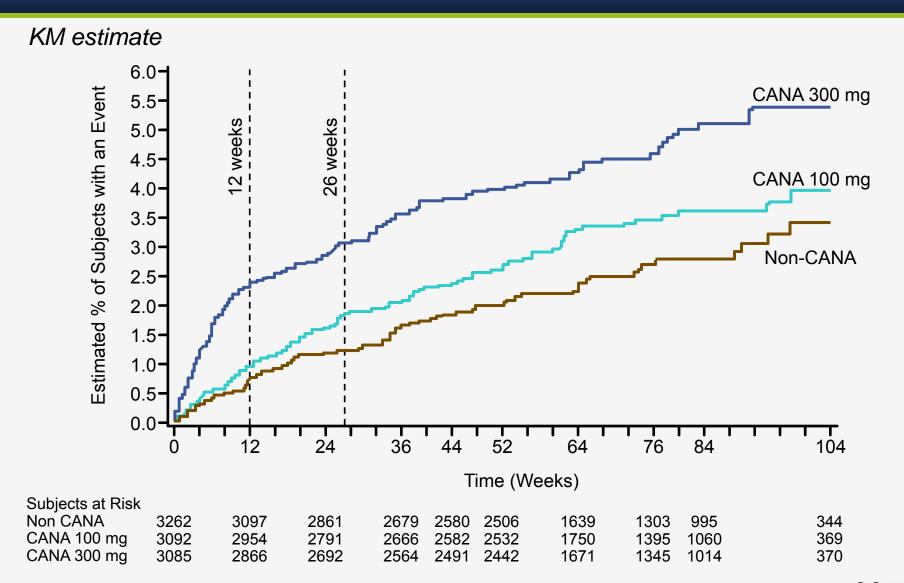
#### In individual Phase 3 studies

- Hypoglycemia in patients on insulin or sulphonylurea agent
  - Low rate of hypoglycemia in studies of subjects not on agents associated with hypoglycemia

### **Adverse Drug Reactions**

**Urinary tract infections** 

Adverse events related to reduced intravascular volume


### Incidence of Urinary Tract Infection Adverse Events Broad Dataset through 01 Jul 2012

|                                | Non-CANA<br>N=3262<br>n (%) | CANA 100 mg<br>N=3092<br>n (%) | CANA 300 mg<br>N=3085<br>n (%) | All CANA<br>N=6177<br>n (%) |
|--------------------------------|-----------------------------|--------------------------------|--------------------------------|-----------------------------|
| Any adverse events             | 218 (6.7)                   | 254 (8.2)                      | 250 (8.1)                      | 504 (8.2)                   |
| Upper UTI AE                   | 11 (0.3)                    | 20 (0.6)                       | 10 (0.3)                       | 30 (0.5)                    |
| AEs leading to discontinuation | 4 (0.1)                     | 11 (0.4)                       | 6 (0.2)                        | 17 (0.3)                    |
| Serious AEs                    | 12 (0.4)                    | 16 (0.5)                       | 8 (0.3)                        | 24 (0.4)                    |

### Reduced Intravascular Volume-Related AEs Broad Dataset through 01 Jul 2012

|                                | Non-CANA<br>N=3262<br>n (%) | CANA 100 mg<br>N=3092<br>n (%) | CANA 300 mg<br>N=3085<br>n (%) |
|--------------------------------|-----------------------------|--------------------------------|--------------------------------|
| Any adverse events             | 78 (2.4)                    | 99 (3.2)                       | 141 (4.6)                      |
| AEs leading to discontinuation | 4 (0.1)                     | 2 (0.1)                        | 3 (0.1)                        |
| Serious AEs                    | 11 (0.3)                    | 12 (0.4)                       | 8 (0.3)                        |
|                                |                             |                                |                                |
| Specific AE Terms              |                             |                                |                                |
| Blood pressure decreased       | 1 (<0.1)                    | 2 (0.1)                        | 2 (0.1)                        |
| Dehydration                    | 13 (0.4)                    | 6 (0.2)                        | 13 (0.4)                       |
| Dizziness postural             | 24 (0.7)                    | 26 (0.8)                       | 33 (1.1)                       |
| Hypotension                    | 20 (0.6)                    | 47 (1.5)                       | 60 (1.9)                       |
| Orthostatic hypotension        | 6 (0.2)                     | 8 (0.3)                        | 27 (0.9)                       |
| Orthostatic intolerance        | 1 (<0.1)                    | 1 (<0.1)                       | 1 (<0.1)                       |
| Presyncope                     | 9 (0.3)                     | 4 (0.1)                        | 3 (0.1)                        |
| Syncope                        | 13 (0.4)                    | 12 (0.4)                       | 20 (0.6)                       |
| Urine output decreased         | 1 (<0.1)                    | 0                              | 0                              |

### Time to Event: Reduced Intravascular Volume AE Broad Dataset through 01 Jul 2012



### Risk Factors: Reduced Intravascular Volume AEs Broad Dataset Core Period

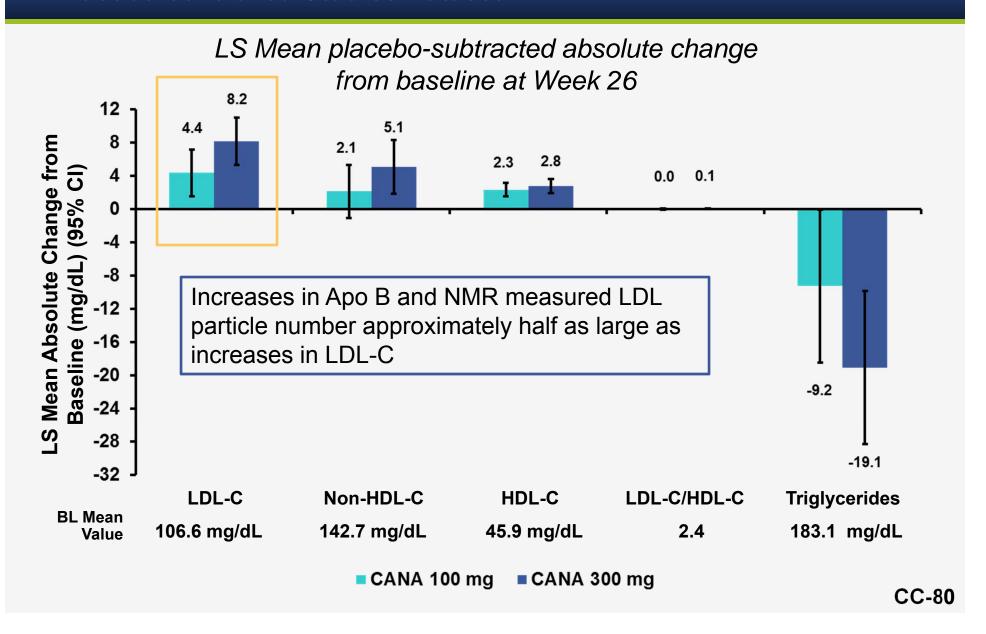
|                                                                            | Non-CANA<br>% (n/N) | CANA 100 mg<br>% (n/N) | CANA 300 mg<br>% (n/N) |
|----------------------------------------------------------------------------|---------------------|------------------------|------------------------|
| eGFR (mL/min/1.73m <sup>2</sup> )                                          |                     |                        |                        |
| <60                                                                        | 2.8 (12/436)        | 5.0 (19/382)           | 8.1 (33/405)           |
| 60 to <90                                                                  | 1.5 (26/1788)       | 2.4 (40/1686)          | 2.9 (48/1680)          |
| ≥90                                                                        | 1.2 (12/1035)       | 1.3 (13/1021)          | 2.4 (24/999)           |
| Age (years)                                                                |                     |                        |                        |
| <75                                                                        | 1.5 (46/3107)       | 2.2 (64/2929)          | 3.1 (90/2913)          |
| ≥75                                                                        | 2.6 (4/155)         | 4.9 (8/163)            | 8.7 (15/172)           |
| Use of loop diuretics                                                      |                     |                        |                        |
| No                                                                         | 1.2 (37/3006)       | 2.3 (65/2876)          | 2.9 (83/2835)          |
| Yes                                                                        | 5.1 (13/256)        | 3.2 (7/216)            | 8.8 (22/250)           |
|                                                                            |                     |                        | _                      |
| Age <75, not on loop diuretics and with eGFR ≥60 mL/min/1.73m <sup>2</sup> | 1.1 (29/2604)       | 1.8 (45/2491)          | 2.2 (54/2434)          |

### Summary: Reduced Intravascular Volume Related Adverse Events

- Dose-related increase in events
  - No increase in AEs leading to discontinuation or SAEs
  - Generally mild-moderate in intensity, short duration
  - Manageable, often with adjustment in concomitant BPlowering regimen
- Risk factors for dose-related increase identified
  - eGFR < 60 mL/min/1.73 m<sup>2</sup>, age ≥ 75 yrs, on loop diuretics
  - Supports dosing recommendations to initiate therapy at 100 mg in patients with any 1 of 3 risk factors

#### **Additional Key Safety Assessments**

- CV Meta-analysis Results
- Renal Safety Evaluations
- Bone Safety


### **Additional Key Safety Assessments**

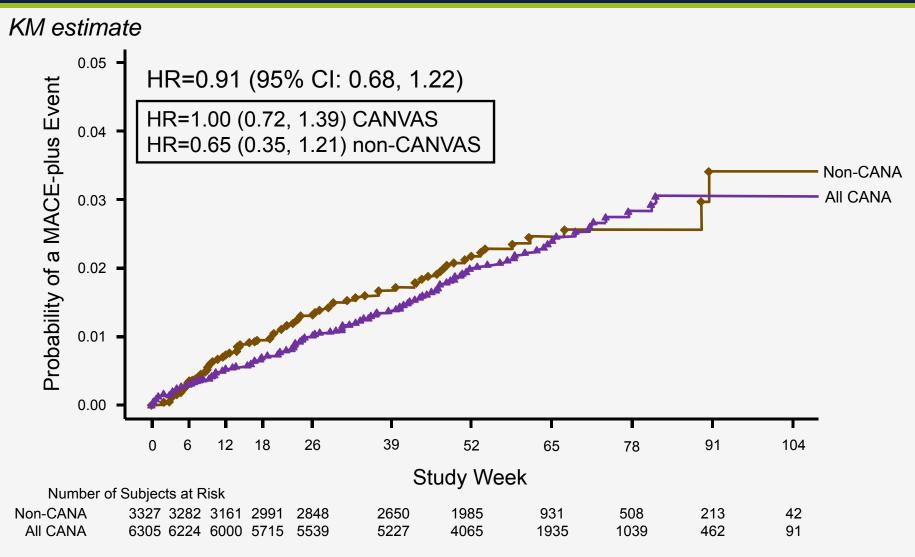
#### **CV Safety**

- Changes in LDL-C
- CV Meta-analysis results

#### Fasting Lipids: Absolute Change

**Placebo-controlled Studies Dataset** 




#### CV Risk Factor Changes with Canagliflozin

- Changes in fasting lipids
  - Increases in LDL-C
    - Smaller increases in non-HDL-C, Apo B, LDL particle number
  - Increases in HDL-C
  - No change in LDL-C/HDL-C ratio
  - Decreases in TG
- Decreases in systolic and diastolic blood pressure
- Improved glycemic control
- Decrease in body weight

## Pre-specified Cardiovascular Meta-analyses Procedures

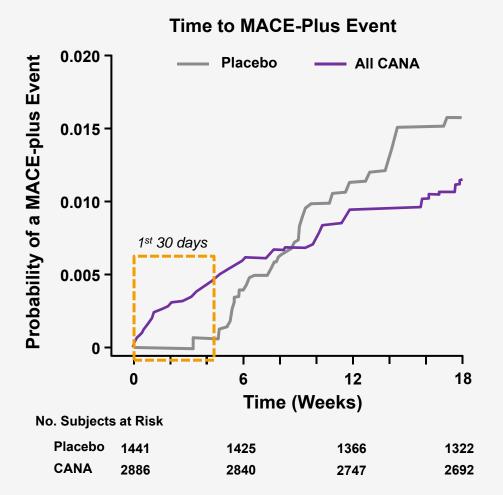
- Predefined composite endpoint of "MACE-plus": CV death, nonfatal MI, nonfatal stroke, hospitalized unstable angina
- Stepwise CV meta-analyses (based upon FDA DM CV guidance, 2008)
  - Current step 1 to meet upper bound < 1.8 planned when 200 events</li>
  - Step 2 to meet upper bound < 1.3 planned when 500 events</li>
- Step 1 meta-analysis included 201 events from all Phase 2 and 3 studies completed prior to 02 FEB 2012
  - Events from CANVAS (161) and non-CANVAS studies (40)
- Blinded, independent adjudication committee operating under committee charter

### Time to Event Analysis for MACE-plus All Phase 2/3 Studies



Note: includes all studies with data base lock prior to 31-Jan-12; mITT analysis set; events within 30 days of last dose

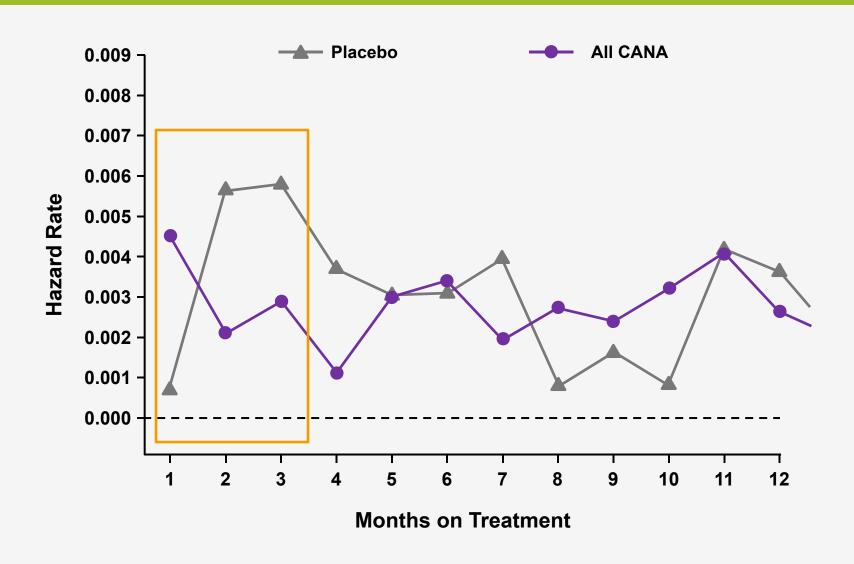
### Incidence and HR for Adjudicated CV Events All Phase 2/3 Studies


|                  | Non-CANA                         | All CANA                            |                                | Hazard Ratio      |
|------------------|----------------------------------|-------------------------------------|--------------------------------|-------------------|
|                  | Events/PYs (per 100 patient-yrs) | Events/PYs<br>(per 100 patient-yrs) | Favors Favors<br>CANA Non-CANA | Estimate (95% CI) |
| Primary Endpoint | 71/3467 (2.05)                   | 130/6821 (1.91)                     | -                              | 0.91 (0.68, 1.22) |
| CV Endpoint      |                                  |                                     |                                |                   |
| CV Death         | 16/3496 (0.46)                   | 21/6888 (0.30)                      |                                | 0.65 (0.34, 1.24) |
| FNF MI           | 27/3484 (0.78)                   | 45/6864 (0.66)                      |                                | 0.83 (0.52, 1.34) |
| FNF Stroke       | 16/3489 (0.46)                   | 47/6859 (0.69)                      |                                | 1.47 (0.83, 2.59) |
| Unstable angina  | 18/3484 (0.52)                   | 26/6874 (0.38)                      |                                | 0.71 (0.39, 1.30) |
|                  |                                  | 0.1                                 | 1.0                            | 10.0              |
|                  |                                  |                                     | Hazard Ratio                   |                   |

# CV Meta-analysis – Further Assessments

**Early Imbalance in CANVAS HR Differences by Event Type** 

## Early MACE-plus Events in CANVAS Assessment of Events in First 30 Days


<u>Issue</u>: imbalance in 1<sup>st</sup> 30 days in CANVAS: 13 events in All CANA groups vs 1 event in PBO (2:1 rand)



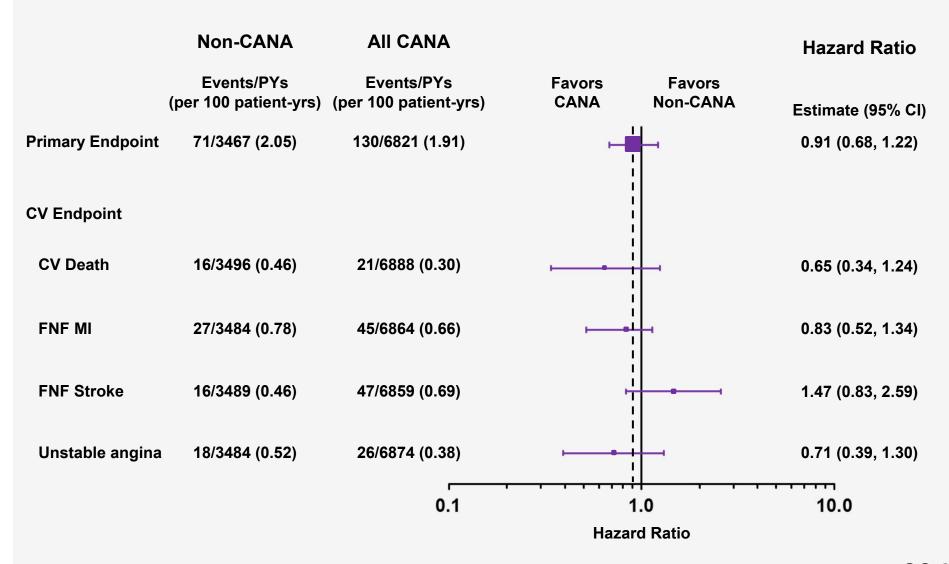
#### <u>Assessment</u>

- Imbalance not seen in overall CV meta-analysis (pre-specified): 15 vs 5 in All CANA vs PBO (~ 2:1 rand)
- Considerable month-to-month variability in frequency of events
- Low rate in PBO group in 1<sup>st</sup> 30 days not typical in T2DM outcome studies
- Lack of association with volume depletion-related adverse events – time course or dose-relationship
- Subjects with "early" MACE+ events not more susceptible subset

### **Estimated Hazard Function MACE-Plus CANVAS Study, mITT Analysis Set**



## Initial Imbalance in Events in CANVAS Assessment


#### Plausibility of association of MACE-plus and volume depletion:

- Volume-related AEs increased over 1st ~ 90-120 days
  - vs MACE-plus events higher rate in CANA group in 1st 30 days
     then lower rate in next 60 days
- Volume-related AEs notably dose-related (300 mg > 100 mg)
  - vs MACE-plus events: 7 in 100 mg group / 6 in 300 mg group
- No reports of reduced intravascular volume-related AEs in subjects with MACE-plus events – or suggestive descriptions in narratives

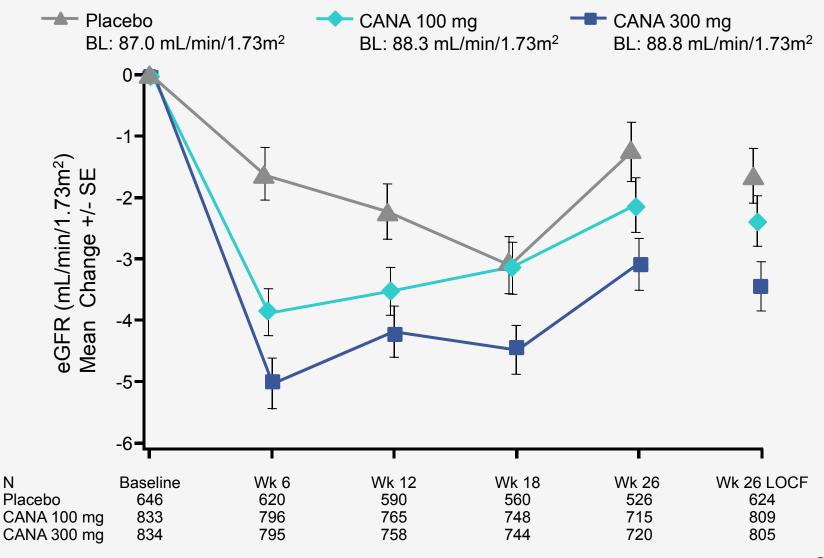
#### Conclusions

- No evident relationship of MACE-plus to reduced intravascularrelated AEs
- Early imbalance reflects the marked month-to-month variability

### Incidence and HR for Adjudicated CV Events All Phase 2/3 Studies

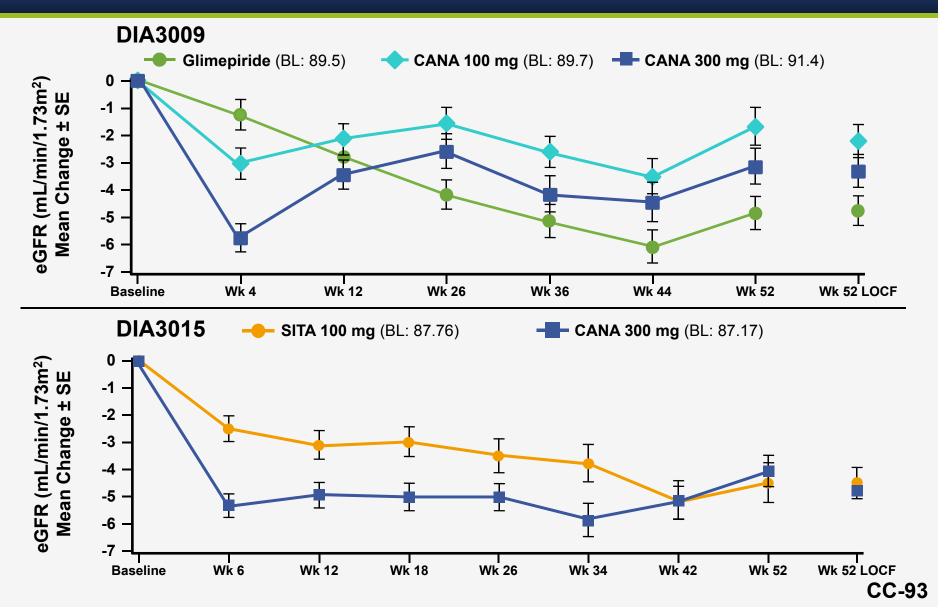


#### **Assessment of Observed HR for Stroke**


- Pre-specified composite provides most robust assessment
  - Variability expected in individual event types with smaller event number
- Assessment of plausibility of association with CANA due to dehydration with hypercoagulability
  - Minimal overlap with volume-related AEs, and decreases in SBP/increases in hemoglobin not notably different in subjects with stroke
  - Different time-course, lack of dose-relationship (vs volume-related AEs)
  - No difference in other events in stroke continuum: TIA HR 0.99
  - No evidence of hypercoagulability
  - No reported increase in strokes with diuretics
- Assessment: reflects a chance difference, with further assessment of stroke HR over time appropriate

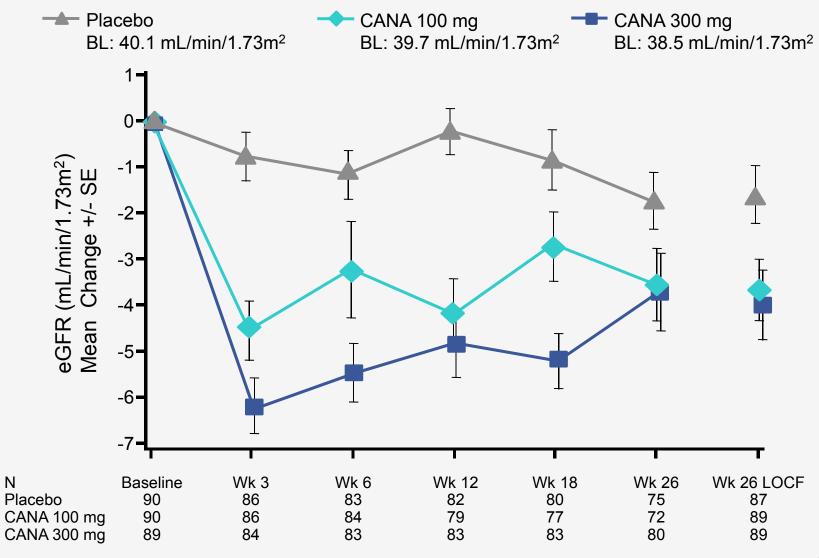
### Additional Key Safety Assessments

#### **Renal Safety Evaluations**

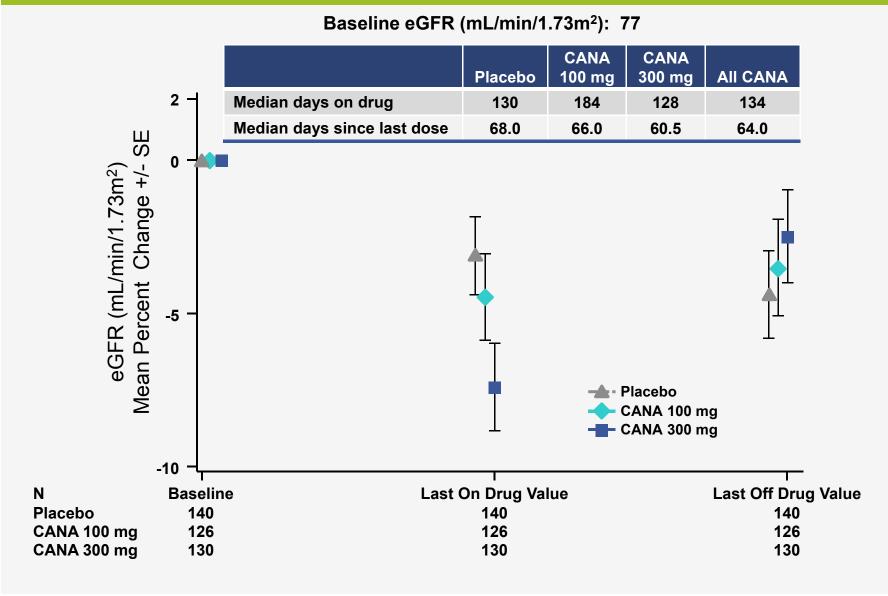

- eGFR change from baseline
- Albumin / Creatinine Ratio (ACR)

### Mean Change in eGFR from Baseline Over Time Placebo-controlled Studies Dataset

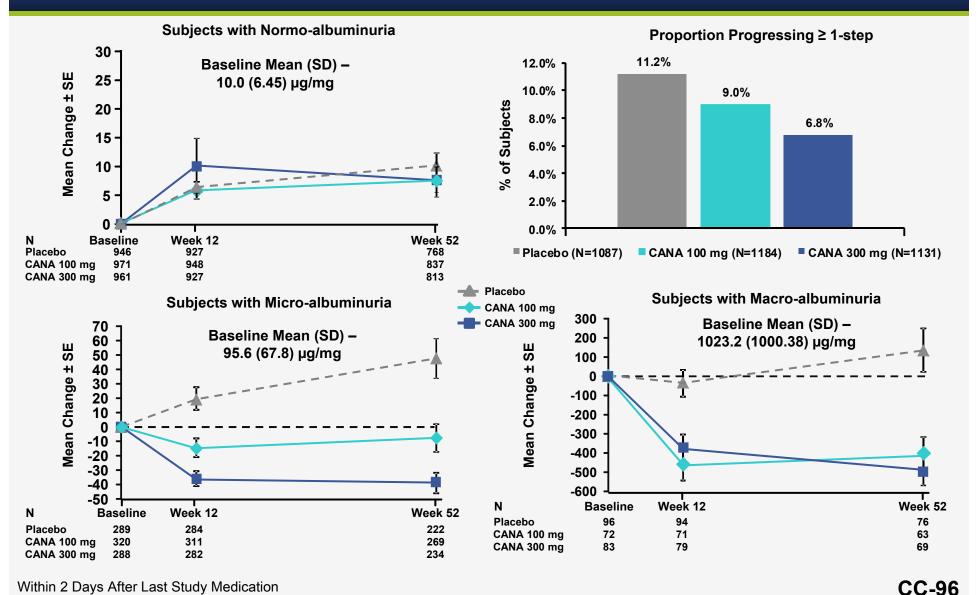



#### eGFR Mean Change from Baseline Over Time

Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009) and Active (Sitagliptin)-controlled Add-on to Metformin + SU Study (DIA3015)




#### Mean Change in eGFR from Baseline Over Time


Study in Subjects with T2DM and Renal Impairment (DIA3004)



### Mean Percent Change in eGFR After Drug Discontinuation CV Safety Study (DIA3008 July 2012 Dataset)



### Change from Baseline in Albumin/Creatinine Ratio CV Safety Study (DIA3008) through 01 Jul 2012



# Safety in Subjects with Stage 3 CKD (eGFR 30 to <60 mL/min/1.73 m<sup>2</sup>)

### Baseline Characteristics Renal Impairment Dataset (eGFR 30 to <60)

|                                        | Placebo-<br>controlled Study<br>N = 2313 | Renal Impairment<br>Dataset<br>N =1085 | Broad Dataset<br>N =9439 | CANVAS<br>N = 4327 |
|----------------------------------------|------------------------------------------|----------------------------------------|--------------------------|--------------------|
| Sex, n (%)                             |                                          |                                        |                          |                    |
| Male                                   | 49.5                                     | 58.4                                   | 58.2                     | 66.1               |
| Female                                 | 50.5                                     | 41.6                                   | 41.8                     | 33.9               |
| Age (y), Mean (SD)                     | 56.0 (9.81)                              | 67.1 (7.67)                            | 59.9 (9.35)              | 62.4 (8.02)        |
| Race, n (%)                            |                                          |                                        |                          |                    |
| White                                  | 72.2                                     | 78.2                                   | 72.6                     | 73.4               |
| Black or African-American              | 5.1                                      | 2.9                                    | 3.8                      | 2.4                |
| Asian                                  | 12.3                                     | 13.0                                   | 15.8                     | 18.4               |
| Other                                  | 10.4                                     | 5.9                                    | 7.8                      | 5.8                |
| Body mass index,<br>kg/m²,Mean (SD)    | 32.1 (6.42)                              | 32.5 (6.12)                            | 31.9 (6.06)              | 32.1 (6.24)        |
| HbA1c (%), Mean (SD)                   | 8.0 (0.93)                               | 8.1 (0.93)                             | 8.0 (0.90)               | 8.2 (0.92)         |
| Duration of diabetes (y),<br>Mean (SD) | 7.3 (6.04)                               | 15.1 (8.40)                            | 10.6 (7.53)              | 13.4 (7.52)        |
| eGFR, Mean                             | 88                                       | 48                                     | 81                       | 77                 |
| ≥ 1 Microvascular Complication, %      | 18.9                                     | 59.1                                   | 33.1                     | 44.2               |

Renal impairment dataset: subjects from DIA3004, DIA3005, DIA3008, and DIA3010 with baseline eGFR 30 to  $< 60 \text{ mL/min}/1.73 \text{ m}^2$ 

### **Summary of Adverse Events**

Renal Impairment Dataset (eGFR 30 to <60)

|                                        | Placebo<br>N=382<br>n (%) | CANA 100 mg<br>N=338<br>n (%) | CANA 300 mg<br>N=365<br>n (%) | All CANA<br>N=703<br>n (%) |
|----------------------------------------|---------------------------|-------------------------------|-------------------------------|----------------------------|
| Any Adverse Events                     | 269 (70.4)                | 250 (74.0)                    | 275 (75.3)                    | 525 (74.7)                 |
| AEs leading to discontinuation         | 22 (5.8)                  | 19 (5.6)                      | 28 (7.7)                      | 47 (6.7)                   |
| Serious AEs                            | 75 (19.6)                 | 45 (13.3)                     | 54 (14.8)                     | 99 (14.1)                  |
| Serious AEs leading to discontinuation | 14 (3.7)                  | 9 (2.7)                       | 12 (3.3)                      | 21 (3.0)                   |
| Death                                  | 6 (1.6)                   | 3 (0.9)                       | 5 (1.4)                       | 8 (1.1)                    |

## Incidence of Adverse Drug Reactions Renal Impairment Dataset (eGFR 30 to <60)

|                                          | Placebo<br>N=382<br>n (%) | CANA 100 mg<br>N=338<br>n (%) | CANA 300 mg<br>N=365<br>n (%) | All CANA<br>N=703<br>n (%) |
|------------------------------------------|---------------------------|-------------------------------|-------------------------------|----------------------------|
| Osmotic diuresis-related AEs             | 14 (3.7)                  | 14 (4.1)                      | 14 (3.8)                      | 28 (4.0)                   |
| Reduced intravascular volume-related AEs | 10 (2.6)                  | 17 (5.0)                      | 31 (8.5)                      | 48 (6.8)                   |
| Urinary tract infection AEs              | 23 (6.0)                  | 21 (6.2)                      | 27 (7.4)                      | 48 (6.8)                   |

| Female Subjects               | Placebo | CANA 100 mg | CANA 300 mg | All CANA  |
|-------------------------------|---------|-------------|-------------|-----------|
|                               | N=156   | N=140       | N=155       | N=295     |
|                               | n (%)   | n (%)       | n (%)       | n (%)     |
| Genital mycotic infection AEs | 3 (1.9) | 15 (10.7)   | 15 (9.7)    | 30 (10.2) |

| Male Subjects                 | Placebo | CANA 100 mg | CANA 300 mg | All CANA |
|-------------------------------|---------|-------------|-------------|----------|
|                               | N=226   | N=198       | N=210       | N=408    |
|                               | n (%)   | n (%)       | n (%)       | n (%)    |
| Genital mycotic infection AEs | 3 (1.3) | 5 (2.5)     | 15 (7.1)    | 20 (4.9) |

# Renal Function and Electrolyte Changes in Subjects with Stage 3 CKD

#### Renal function

- Larger initial percentage decrease in eGFR, then rise in eGFR towards baseline
  - Reversibility after discontinuation (DIA3008)
- Outlier analyses shows similar pattern as seen in Broad Dataset
- No increase in renal-related SAEs or AEs leading to D/C
- Decrease in the urinary albumin creatinine ratio (DIA3004)

#### Electrolytes

- Modest mean increases in serum phosphate and magnesium
  - Low incidence of values meeting outlier criteria (> 25% above ULN), and no AEs reported
- No relevant mean changes in serum potassium
  - Infrequent hyperkalemia generally related to multiple factors including CKD + ACE inhibitors/ARBs + other agents (eg, aliskerin)

### Additional Key Safety Assessments

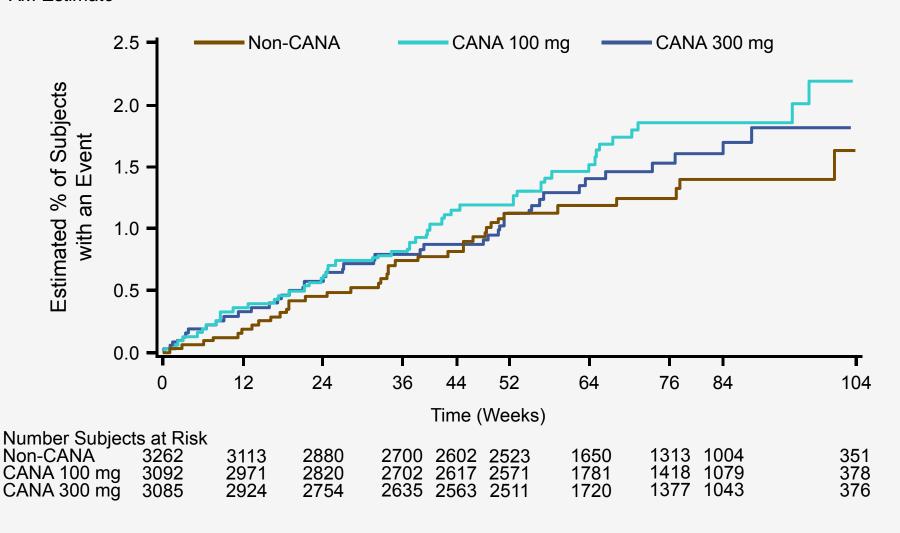
#### **Bone Safety**

- Calcium, phosphate, 1-25 dihydroxy-vitamin D, and PTH
- Bone density assessment (DXA)
- Incidence of fractures

#### **Changes in Calcium Axis**

- No meaningful mean changes in serum calcium or urine calcium excretion
- Small mean increases in serum phosphate and magnesium (5-10%) – stable over time
- Transient increase in PTH at Week 3 with no substantive changes at Week 12 (Phase 2), or at Weeks 26 or 52 (Phase 3)
  - No increase in PTH in Stage 3 CKD subjects (DIA3004) small decrease relative to placebo over 26 weeks
- Variable, but overall not meaningful changes in 1,25dihydroxyvitamin D levels

### Percent Change in BMD Results at Week 52 by DXA Study in Older Subjects with T2DM (DIA3010)


| Site           | CANA 100 mg<br>Pbo-subtracted<br>Mean (95% CI)<br>N=241 | CANA 300 mg<br>Pbo-subtracted<br>Mean (95% CI)<br>N=236 |
|----------------|---------------------------------------------------------|---------------------------------------------------------|
| Lumbar spine   | -0.4 (-1.0, 0.3)                                        | -0.7 (-1.4, -0.1)                                       |
| Total hip      | -0.4 (-1.0, 0.1)                                        | -0.7 (-1.3, -0.2)                                       |
| Femoral neck   | 0.1 (-0.6, 0.8)                                         | 0.6 (-0.1, 1.4)                                         |
| Distal forearm | 0.5 (-0.1, 1.2)                                         | 0.1 (-0.6, 0.7)                                         |

## **Adjudicated Fractures**Broad Dataset through 01 Jul 2012

|                                                                   | Non-CANA<br>N=3262 | CANA 100 mg<br>N=3092 | CANA 300 mg<br>N=3085 | AII CANA<br>N=6177   |
|-------------------------------------------------------------------|--------------------|-----------------------|-----------------------|----------------------|
| Subjects with adjudicated fracture event n (%)                    | 53 (1.6)           | 68 (2.2)              | 61 (2.0)              | 129 (2.1)            |
| Incidence rate/1000 person<br>years exposure (SE)                 | 13.17 (1.83)       | 16.69 (2.04)          | 15.30 (1.98)          | 16.00 (1.41)         |
| Between group (vs Non-CANA) difference in incidence rate (95% CI) | -                  | 3.5<br>(-1.85; 8.88)  | 2.1<br>(-3.14; 7.4)   | 2.8<br>(-1.7; 7.36)  |
| Subjects with <b>adjudicated low trauma</b> fracture n (%)        | 38 (1.2)           | 51 (1.6)              | 48 (1.6)              | 99 (1.6)             |
| Incidence rate/1000 person<br>years exposure                      | 9.44 (1.55)        | 12.51 (1.77)          | 12.04 (1.76)          | 12.28 (1.24)         |
| Between group (vs Non-CANA) difference in incidence rate (95% CI) | -                  | 3.1<br>(-1.54; 7.68)  | 2.6<br>(-2.00; 7.19)  | 2.8<br>(-1.06; 6.73) |

### Time to First Low Trauma Fracture AE Broad Dataset through 01 Jul 2012





#### **Summary of Safety and Tolerability**

- Large Phase 3 program with >10,000 subjects randomized
  - Substantial proportion of vulnerable individuals studied
- Overall well tolerated at both doses of canagliflozin
  - Low rate of discontinuations due to adverse events
  - Incidence of SAEs and deaths comparable to control
  - Safety and tolerability profile similar across range of eGFR
     (> 30 mL/min/1.73 m<sup>2</sup>)

#### Summary of Safety and Tolerability (cont.)

- Specific adverse drug reactions characterized
  - Genital mycotic infections and UTIs
  - Osmotic diuresis-related (thirst, polyuria, frequency)
  - Reduced intravascular volume AEs higher at 300 mg than at 100 mg,
     with risk factors identified
  - Hypoglycemia with insulin or sulphonylurea agents
  - Other including constipation and uncommon events of urticaria/rash
- Specific safety assessments performed showed
  - Increase in LDL-C; CV HR 0.91 with upper bound of 1.22 (<1.8)</li>
  - Small, transient, and reversible decreases in eGFR consistent with the hemodynamic effect of canagliflozin
  - Small decrease in BMD (likely related to weight loss), small numerical imbalance in fractures

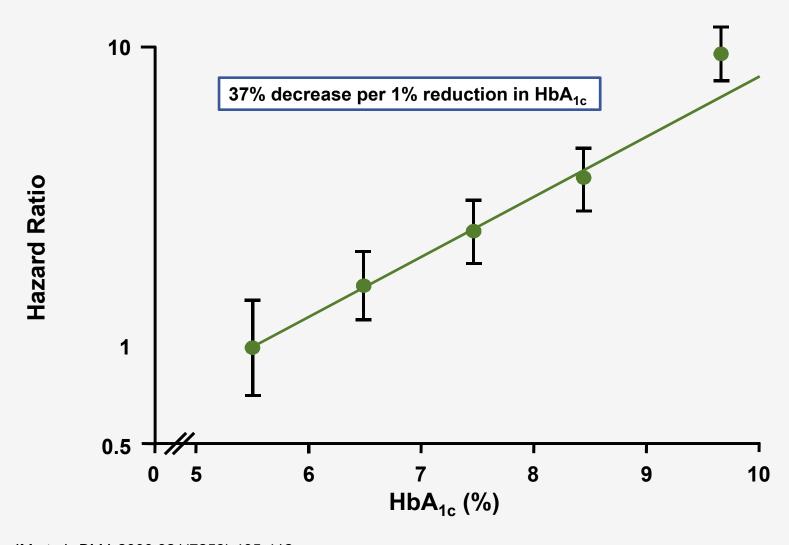
#### **Summary of Efficacy**

- Consistent and sustained dose-related improvements in glucose control with a low incidence of hypoglycemia
  - Reductions in HbA<sub>1c</sub>, demonstrated non-inferior to glimepiride and sitagliptin and superior at 300 mg to both agents
  - Greater proportion to HbA<sub>1c</sub> goals
  - Fasting and post-meal glucose
- Improvements in beta-cell function (fasting and post-meal)
- Reductions in systolic blood pressure and in body weight

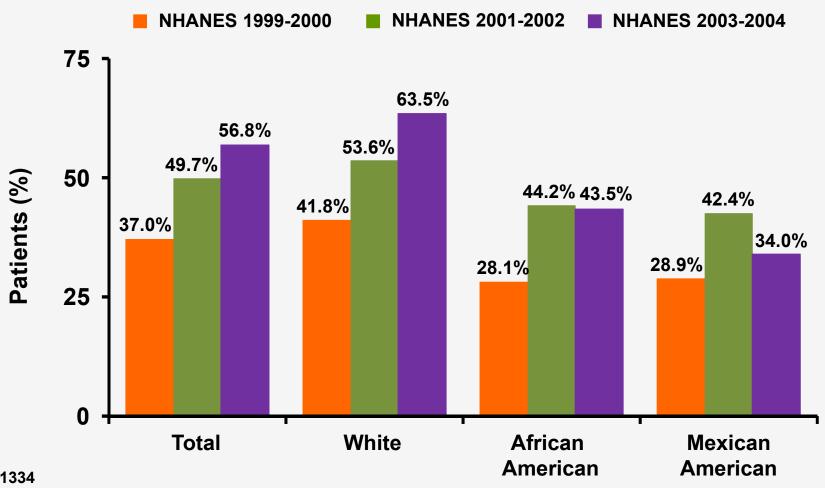
#### Canagliflozin: Dosing Recommendations

In patients with T2DM (with an eGFR of >30 mL/min/1.73m<sup>2</sup>) who need improved glycemic control

- Canagliflozin 100 mg or 300 mg
  - Starting dose of 100 mg in patients with eGFR <60 mL/min/1.73m<sup>2</sup>,
     loop diuretics, or age ≥75 years
  - If inadequate response in patients started on 100 mg, increase to 300 mg dose


# Canagliflozin Benefit/Risk Assessment

#### John Gerich, MD


**Professor Emeritus** 

University of Rochester Medical Center

# **Reduction in HbA<sub>1c</sub> Reduces Risk of Microvascular Disease**



# Glycemic Control Has Improved – But Many Patients Still Not at Goal HbA<sub>1c</sub> < 7%



N=1334 NHANES=National Health and Nutrition Examination Survey

Data from Ford E, et al. Diabetes Care. 2008;31(1):102-104.

# **Limitations of Current Treatments for Patients with T2DM**

- 5 classes of oral agents 2 classes of SQ agents are recommended by ADA/EASD
- Limitations of currently available classes
  - Limited efficacy or durability: sulphonylurea (SU) agents, DPP-4 inhibitors
  - Hypoglycemia: SU agents, insulin
  - Weight gain: SU agents, PPARγ agents, insulin
  - Gl side effects: metformin, GLP-1 agonists
  - Fluid retention: SU agents, PPARγ agents, insulin

Conclusion: there is a need for new agents / new options

#### Benefit/Risk Profile of Canagliflozin

#### Benefits

Robust, consistent, and sustained HbA1c-lowering, with low incidence of hypoglycemia

Unique MOA – combinable/ complementary with other AHAs

Improves beta-cell function

Weight loss

Reduction in blood pressure

Simple to administer, with oncedaily oral dosing

Flexible dosing (100 mg and 300 mg)

#### Risks

Increase in genital mycotic infections

Small increase in UTIs without increase in upper UTIs or SAEs

Dose-related higher incidence of reduced volume-related events

Dose-related increase in LDL-C

Small reduction in BMD

#### **Canagliflozin Summary**

 Flexible dosing (100 and 300 mg) to meet the needs of different patients

Favorable Benefit/Risk profile

 Valuable addition to address the unmet medical need of patients with type 2 diabetes